Answer: Q=5.46 L/s
COP=2.58
Explanation:
Given that
Cp = 4.18 kJ/(kg.C
density = 1 kg/L
Heat rejected Qr= 570 kJ/min
Power in put W= 2.65 KW
From first law of thermodynamics
U = W+ q
q = Heat absorbed
U = internal energy
W = workdone
U = 570 kJ/min = 9.5 KW
9.5 = 2.65 + q
q = 6.85 KW
COP = q/W
COP = 6.58 / 2.65
COP=2.58
Lets take volume flow rate is Q
So mass flow rate of water m = ρ Q
q = m Cp ΔT
6.85 = 1 x Q x 4.18 ( 23-5)
Q=0.091 L/min
Q=5.46 L/s
Answer:
<em>1.01 W/m</em>
Explanation:
diameter of the pipe d = 30 mm = 0.03 m
radius of the pipe r = d/2 = 0.015 m
external air temperature Ta = 20 °C
temperature of pipe wall Tw = 150 °C
convection coefficient at outer tube surface h = 11 W/m^2-K
From the above,<em> we assumed that the pipe wall and the oil are in thermal equilibrium</em>.
area of the pipe per unit length A =
=
m^2/m
convectional heat loss Q = Ah(Tw - Ta)
Q = 7.069 x 10^-4 x 11 x (150 - 20)
Q = 7.069 x 10^-4 x 11 x 130 = <em>1.01 W/m</em>
Answer:
Please INCLUDE a picture.
Explanation:
You did not include a picture, so there is no way to tell how the charges will interact with each other.
Please INCLUDE a picture.
High frequency, as humans cannot hear the sound of the bats using echolocation because of it's such high frequency.
Hope this helps :)
The answer is D) <span>Water has a high heat capacity.</span>