Answer:
249 L
Explanation:
Step 1: Write the balanced equation
C₃H₈(g) + 5 O₂(g) → 3 CO₂(g) + 4 H₂O(g)
Step 2: Calculate the moles of CO₂ produced from 5.00 moles of C₃H₈
The molar ratio of C₃H₈ to CO₂ is 1:3. The moles of CO₂ produced are 3/1 × 5.00 mol = 15.0 mol
Step 3: Convert "30.0°C" to Kelvin
We will use the following expression.
K = °C + 273.15
K = 30.0°C + 273.15 = 303.2 K
Step 4: Calculate the volume of carbon dioxide
We will use the ideal gas equation.
P × V = n × R × T
V = n × R × T/P
V = 15.0 mol × 0.0821 atm.L/mol.K × 303.2 K/1.50 atm
V = 249 L
H is 4*10^6 M , OH is 2.5*10^-9 M
Answer:
True
Explanation:
Yes I agree object can be in motion and in not motion at the same time for example there are two men travelling on the bus one person is A another person is B. the person be B rest so by seeing person be the person A also sits but the person see who saw the person be B move along with person C so the the person be B is in rest for person Abut is motion for a person C.
<span>
As a liquid is heated, its vapor pressure increases until the vapor pressure
equals the pressure of the gas above it.
Bubbles of vaporized liquid (i.e., gas) form within the bulk liquid and
then rise to the surface where they burst and release the gas. (At
the boiling temperature the vapor inside a bubble has enough pressure to
keep the bubble from collapsing.)
In order to form vapor, the molecules of the liquid must overcome the forces
of attraction between them.<span>
The temperature of a boiling liquid remains constant, even when more heat
is add.</span></span>
Answer: A mass of 124457.96 g ammonia is produced by reacting a 450 L sample of nitrogen gas at a temperature of 450 K and a pressure of 300 atm.
Explanation:
Given: Volume = 450 L
Temperature = 450 K
Pressure = 300 atm
Using ideal gas equation, moles of nitrogen are calculated as follows.
PV = nRT
where,
P = pressure
V = volume
n = no. of moles
R = gas constant = 0.0821 L atm/mol K
T = tempertaure
Substitute values into the above formula as follows.

According to the given equation, 1 mole of nitrogen forms 2 moles of ammonia. So, moles of ammonia formed by 3654.08 moles of nitrogen is as follows.

As moles is the mass of substance divided by its molar mass. So, mass of ammonia (molar mass = 17.03 g/mol) is as follows.

Thus, we can conclude that a mass of 124457.96 g ammonia is produced by reacting a 450 L sample of nitrogen gas at a temperature of 450 K and a pressure of 300 atm.