Answer:
c. dioptre that's the answer.
Assuming that the angle is the same for both ropes, then D. is the answer. You have to consider also if the ropes are close together or far apart and if the force to move the object is in line with the ropes or perpendicular to them.
<span />
Firstly they have a acceleration downwards due the force downwards due they gravitational field acting on it's mass.
as it falls it gains speed, and as it gains speed the air Resistance which is a upward force actin on the drop increases, eventually the rain drop's upward and downward forces are balanced and hence there is no RESULTANT force therefore no acceleration, so the drops falls in constant speed (terminal verlocity is a better term)
Are you wondering that why is the raindrop still moving given that the forces are balanced? If so according to Newton's 1st law an object will keep moving or Remain at rest until a RESULTANT force acts on it.
Answer:
In physics, the kinetic energy (KE) of an object is the energy that it possesses due to its motion
In classical mechanics, the gravitational potential at a location is equal to the work (energy transferred) per unit mass that would be needed to move an object to that location from a fixed reference location. It is analogous to the electric potential with mass playing the role of charge. The reference location, where the potential is zero, is by convention infinitely far away from any mass, resulting in a negative potential at any finite distance.
In mathematics, the gravitational potential is also known as the Newtonian potential and is fundamental in the study of potential theory. It may also be used for solving the electrostatic and magnetostatic fields generated by uniformly charged or polarized ellipsoidal bodies