Answer:
* The first thing we observe is that the frequency response does not change
* The current that circulates in the circuit decreases due to the new resistance at the resonance point,
Z = R + R₂
Explanation:
The impedance of a series circuit is
Z₀² = R² + (X_L-X_C) ²
when we place another resistor in series the initial resistance impedance changes to
Z² = (R + R₂) ² + (X_L - X_C) ²
let's analyze this expression
* The first thing we observe is that the frequency response does not change
* The current that circulates in the circuit decreases due to the new resistance at the resonance point,
Z = R + R₂
Answer:
18.63 N
Explanation:
Assuming that the sum of torques are equal
Στ = Iα
First wheel
Στ = 5 * 0.51 = 3 * (0.51)² * α
On making α subject of formula, we have
α = 2.55 / 0.7803
α = 3.27
If we make the α of each one equal to each other so that
5 / (3 * 0.51) = F2 / (3 * 1.9)
solve for F2 by making F2 the subject of the formula, we have
F2 = (3 * 1.9 * 5) / (3 * 0.51)
F2 = 28.5 / 1.53
F2 = 18.63 N
Therefore, the force F2 has to 18.63 N in order to impart the same angular acceleration to each wheel.
The pathway for you to be able is in your room you need
The correct answer is (b.) y/x hertz. That is because the formula to get the frequency is f = v / w. The following values (v=y meters / second; wavelength = x meters) must be substituted to the equation, which leaves you y/x hertz.
You want to draw a free body diagram of the forces on the sled in the horizontal x-direction.
If you visualize the system in an x-y coordinate plane, the force along the x-direction is the angle it makes with the x-axis multiples by the force.
The angle made with the x-axis is cosine of the angle theta.
Please see picture attached.