Answer:
45.6m
Explanation:
The equation for the position y of an object in free fall is:

With the given values in the question the equation has one unknown v₀:

Solving for t=1:
1) 
To find the hight of the tower you can use the concept of energy conservation:
The energy of the body 1 sec before it hits the ground:
2) 
If h is the height of the tower, the energy on top of the tower:
3) 
Combining equation 2 and 3 and solving for h:
4) 
Combining equation 1 and 4:

Answer: C) divide: distance ÷ velocity
Explanation:
The velocity
equation is distance
divided by time
:

If we isolate
we will have:

Hence, the correct option is C: distance divided by velocity.
Answer: 1.55 x 10⁴ Nm²c^-1
Explanation: The electric flux, electric field intensity and area are related by the formulae below.
Φ= EAcosθ,
Where Φ= electric flux (Nm²c^-1)
E =electric field intensity (N/m²)
A = Area (m²)
θ= this is angle between the planar area and the magnetic flux
For our question E=3.80KN/c= 3800 N/c
A= 0.700 x 0.350= 0.245m²
θ= 0° ( this is because the electric field was applied along the x axis, thus the electric flux will be parallel to the area).
Hence Φ= 3800 x 0.245 x cos(0)
= 3800 x 0.245 x 1 (value of cos 0° =1)
= 1.55 x 10⁴ Nm²c^-1
Thus the electric field is 1.55 x 10⁴ Nm²c^-1
Answer:
884 balloons
Explanation:
Assume ideal gas, since temperature is constant, then the product of pressure and volume is constant.
So if pressures reduces from 100 to 1.2, the new volume would be

The spherical volume of each of the balloon of 30cm diameter (15 cm or 0.15 m in radius) is

The number of balloons that 12.5 m3 can fill in is

Which of the following is it though...?