Answer:
Clumped distribution is the most common type of dispersion found in nature. In clumped distribution, the distance between neighboring individuals is minimized.
1. Define Newtons second law of motion (this will help put things into perspective)
2.Get the mass of the object (in this case 75 kg)
3.The net force acting on the object...find it (in this case 500 N)
4.Change the equation to F=ma (500=75a)
5.Divide both sides by 75 and that is the acceleration.
Answer:
The object accelerates downward at 4 m/s² since the tension on the rope is less than weight of the object.
Explanation:
Given;
mass of the object, m = 2 kg
weigh of the object, W = 20 N
tension on the rope, T = 12 N
The acceleration of the object is calculated by applying Newton's second law of motion as follows;
T = F + W
T = ma + W
ma = T - W
(the negative sign indicates deceleration of the object)
The object accelerates downward at 4 m/s² since the tension on the rope is less than weight of the object.
Answer:
1/2 Hz
Explanation:
A simple harmonic motion has an equation in the form of

where A is the amplitude,
is the angular frequency and
is the initial phase.
Since our body has an equation of x = 5cos(π t + π/3) we can equate
and solve for frequency f

f = 1/2 Hz
Answer:
f = 485.62 N
Explanation:
Since, the bag is moving with some acceleration. Hence, the unbalanced force will be given as:
Unbalanced Force = Horizontal Component Applied Force - Frictional Force
Unbalanced Force = Fx - f
But, from Newtons Second Law of Motion:
Unbalanced Force = ma
comparing the equations:
ma = Fx - f
f = F Cos θ - ma
where,
f = frictional force = ?
F = Applied force = 593 N
m = mass of person = 49 kg
a = acceleration = 0.57 m/s²
θ = Angle with horizontal = 30°
Therefore,
f = (593 N)(Cos 30°) - (49 kg)(0.57 m/s²)
f = 513.55 N - 27.93 N
<u>f = 485.62 N</u>