Answer:
D is the answer
Explanation: Because I did this
1. D, constant
Force must be in the direction of the velocity to change speed.
2. B. to the center of the curvature
This allows the vehicle to complete the turn.
Answer:
a) 20 nodes b) zero nodes
Explanation:
When we have standing waves in a bend we have nodes at the ends and the equation describes the number of possible waves in the string is
L = n λ/2
Where λ is the wavelength, L is the length of the string, in our case it would be D and n is an entered. We can strip the wavelength of this expression
λ = 2L / n
Let's calculate what value of n we have for a wavelength equal to D/10
λ = 2D / n
λ = D / 10
We match and calculate
2D / n = D / 10
2 / n = 1/10
n = 20
Perform them for λ = D / 20
λ = 2D / n
2D / n = D / 20
n = 2 20 = 40
Since n is an inter there should be a wavelength for each value of n in the bone period there should be 20 different wavelengths
B) for La = 10D
2D / n = 10D
1 / n = 5
n = 1/5 = 0.2
La = 20D
2D / n = 20D
1 / n = 10
n = 1/10 = 0.1
These numbers are not entered so there can be no wave in this period
Since you are looking for the speed, you need to rearrange the formula which is f = speed / wavelength. That should give you speed = f (wavelength.) All you need to do next is to substitute the value to the following equation. speed = 250 Hz (6.0m) that should leave you with 1500 m/s which is very fast.