Answer:
About 547 grams.
Explanation:
We want to determine the mass of copper (II) bicarbonate produced when a reaction produces 2.95 moles of copper (II) bicarbonate.
To do so, we can use the initial value and convert it to grams using the molar mass.
Find the molar mass of copper (II) bicarbonate by summing the molar mass of each individual atom:

Dimensional Analysis:

In conclusion, about 547 grams of copper (II) bicarbonate is produced.
Fossil fuels are buried geologic deposits of organic materials. They are made of decaying plants and animals that have been turned into to natural oil. A few examples of fossil fuels are coal and oil.
Answer: Salt and Water
Explanation:
An Arrhenius acid (HCl) can best be defined as any substance that when added to water increases the concentration of H+ ions.
While an Arrhenius base (KOH) is any substance that when added to water increases the concentration of OH- ions.
When an Arrhenius acid such as HCl reacts with an Arrhenius base such as KOH, the end products will be salt and water, in a process called Neutralization Reaction.
HCl (aq) + KOH (aq) -------> KCl (aq) + H2O (l)
Answer: option A. 350 K and 0.30 atm
Explanation: a gas behaves as an ideal gas at higher temperature and low pressure
Mass of KCl= 19.57 g
<h3>Further explanation</h3>
Given
12.6 g of Oxygen
Required
mass of KCl
Solution
Reaction
2KClO3 ⇒ 2KCl + 3O2
mol O2 :
= mass : MW
= 12.6 : 32 g/mol
= 0.39375
From the equation, mol KCl :
= 2/3 x mol O2
= 2/3 x 0.39375
=0.2625
Mass KCl :
= mol x MW
= 0.2625 x 74,5513 g/mol
= 19.57 g