The force of attraction between two objects can be illustrated using Newton's Law of Universal Gravitation.
The relation between the different parameters is shown in the attached image.
Now, from the relation, we can deduce that the force between the two objects is directly proportional to the masses of the two objects.
This means that, if the mass of one object is doubled, then the force between the two objects will also be doubled.
Answer:
q₁ = + 1.25 nC
Explanation:
Theory of electrical forces
Because the particle q₃ is close to two other electrically charged particles, it will experience two electrical forces and the solution of the problem is of a vector nature.
Known data
q₃=5 nC
q₂=- 3 nC
d₁₃= 2 cm
d₂₃ = 4 cm
Graphic attached
The directions of the individual forces exerted by q1 and q₂ on q₃ are shown in the attached figure.
For the net force on q3 to be zero F₁₃ and F₂₃ must have the same magnitude and opposite direction, So, the charge q₁ must be positive(q₁+).
The force (F₁₃) of q₁ on q₃ is repulsive because the charges have equal signs ,then. F₁₃ is directed to the left (-x).
The force (F₂₃) of q₂ on q₃ is attractive because the charges have opposite signs. F₂₃ is directed to the right (+x)
Calculation of q1
F₁₃ = F₂₃

We divide by (k * q3) on both sides of the equation



q₁ = + 1.25 nC
Answer:
1.33×10⁻¹⁰ N
Explanation:
F = GMm / r²
where G is the gravitational constant,
M and m are the masses of the objects,
and r is the distance between them.
F = (6.67×10⁻¹¹ N/m²/kg²) (1000 kg) (2000 kg) / (1000 m)²
F = 1.33×10⁻¹⁰ N
Sup Milk,
Sublimation = Energy is absorbed and a solid turns to a gas.
Condensation = Energy is released and a gas changes to a liquid.
Evaporation = Energy is absorbed into a liquid to turn it into a gas.
B boiling point because you used heat and it turned to vapor so it was boiled