Answer:
4.5kgm/s
Explanation:
Change in momentum is expressed as
Change in momentum = m(v-u)
M is the mass
V is the final velocity
u is the initial velocity
Given
m=0.45kg
v = 30m/s
u = 20m/s
Substitute
Change in momentum = 0.45(30-20)
Change in momentum = 0.45×10
Change in momentum = 4.5kgm/s
(a) 328.6 kg m/s
The linear impulse experienced by the passenger in the car is equal to the change in momentum of the passenger:

where
m = 62.0 kg is the mass of the passenger
is the change in velocity of the car (and the passenger), which is

So, the linear impulse experienced by the passenger is

(b) 404.7 N
The linear impulse experienced by the passenger is also equal to the product between the average force and the time interval:

where in this case
is the linear impulse
is the time during which the force is applied
Solving the equation for F, we find the magnitude of the average force experienced by the passenger:

The answers is an electrical force.
Under normal conditions, atoms interact with each other via electrons that are furthest away from the nucleus. These electrons from the what is called the outer shell of the atom, electrons from the outer shell that can participate in chemical reactions are called valence electrons.
Yes, yes, we know all of that. It certainly took you long enough to
get around to asking your question.
If
a = (14, 10.5, 0)
and
b = (4.62, 9.45, 0) ,
then, to begin with, neither vector has a z-component, and they
both lie in the x-y plane.
Their dot-product a · b = (14 x 4.62) + (10.5 x 9.45) =
(64.68) + (99.225) = 163.905 (scalar)
I feel I earned your generous 5 points just reading your treatise and
finding your question (in the last line). I shall cherish every one of them.
Answer:
Yes
Explanation:
The momentum of an object is given by:

where
m is the mass of the object
v is the velocity of the object
We know that an elephant has a mass much larger than the mass of an ant. However, we see that the momentum of the animal also depends on its velocity.
If the elephant is at rest, its velocity is zero:
v = 0
so its momentum is also zero:
p = 0
And therefore, an ant which is moving (so, non-zero speed) can have more momentum than an elephant, if the elephant is at rest.