Answer: C.
Explanation:
For a parallel-plate capacitor where the distance between the plates is d.
The capacitance is:
C = e*A/d
You can see that the distance is in the denominator, then if we double the distance, the capacitance halves.
Now, the stored energy can be written as:
E = (1/2)*Q^2/C
Now you can see that in this case, the capacitance is in the denominator, then we can rewrite this as:
E = (1/2)*Q^2*d/(e*A)
e is a constant, A is the area of the plates, that is also constant, and Q is the charge, that can not change because the capacitor is disconnected.
Then we can define:
K = (1/2)*Q^2/(e*A)
And now we can write the energy as:
E = K*d
Then the energy is proportional to the distance between the plates, this means that if we double the distance, we also double the energy.
Answer:
15 cm
Explanation:
= Diameter of the coin = 15 mm
= Diameter of the image of coin = 5 mm
= distance of the coin from mirror = 15 cm
= distance of the image of coin from mirror = ?
Using the equation


= - 5 cm
= radius of curvature
Using the mirror equation


= - 15 cm
Answer:
the answer is that the dough has the same mass before and after it was flattened
The total work is
(mass of the elevator, kg) x (9.8 m/s²) x (9.0 m) Joules .
Newton's 2nd law of motion:
Force = (mass) x (acceleration)
= (0.314 kg) x (164 m/s²)
= 51.5 newtons
(about 11.6 pounds) .
Notice that the ball is only accelerating while it's in contact with the racket.
The instant the ball loses contact with the racket, it stops accelerating, and
sails off in a straight line at whatever speed it had when it left the strings.