If it were possible for an object to fall freely near the surface of the Earth,
-- The direction of its velocity would always be "down"; that is, toward the center of the Earth.
-- The size of its velocity would continually increase, at the rate of 9.8 meters per second for every second it falls.
Answer:

Explanation:
Given data:



Let the distance traveled by the object in the second case be 
In the given problem, work done by the forces are same in both the cases.
Thus,





Grapefruit juice. The more acidic something is the more h it has.
Answer:
The time it will take for the car to reach a velocity of 28 m/s is 7 seconds
Explanation:
The parameters of the car are;
The acceleration of the car, a = 4 m/s²
The final velocity of the car, v = 28 m/s
The initial velocity of the car, u = 0 m/s (The car starts from rest)
The kinematic equation that can be used for finding (the time) how long it will take for the car to reach a velocity of 28 m/s is given as follows;
v = u + a·t
Where;
v = The final velocity of the car, v = 28 m/s
u = The initial velocity of the car = 0 m/s
a = The acceleration of the car = 4 m/s²
t = =The time it will take for the car to reach a velocity of 28 m/s
Therefore, we get;
t = (v - u)/a
t = (28 m/s - 0 m/s)/(4 m/s²) = 7 s
The time it will take for the car to reach a velocity of 28 m/s, t = 7 seconds.