First there is a need to calculate the molar mass of Ba(NO₃)₂:
137.3 + 2 (14.0) + 6 (16) = 261.3 grams/mole
The molar mass, denoted by M in chemistry refers to a physical characteristic illustrated as the mass of a given component divided by the amount of the component. The molar masses are always denoted in grams/mole.
After finding the molar mass, the number of moles can be identified as:
432 grams / 261.3 g/mol = 1.65 moles of Ba(NO₃)₂.
To convert the given value to the desired one, use the proper unit conversions and dimensional analysis. Use the following conversion for the first set.
1 g = 100 cg
1 L = 1000 mL
Using the concept presented above,
V = (59800 cg/L)(1 g/100 cg)1 L/1000 mL)
V = 0.598 g/mL
Answer: oxygen
There is the s,p,d and f blocks, from groups 1-2 that is the s block, 13-18 that’s the p block, 3-12 is the d block and the f would be lanthanide(#57-71) and actinide (#89-103).
Answer:
4NH₃(g) +3O₂(g) ⇒2N₂(g) +6H₂O(g)
Explanation: