Answer: A. They absorb radiation given off by the earth.
Explanation: Green house gases are gases that have the capability of trapping the heat energy from the sun in our environment. These special attribute of these gases is what keeps our environment warm and sustain life as we know it. Example of Green House Gases include: carbon dioxide, water vapour and methane.
Answer:
An educated guess based on what you already know.
Explanation:
First let's find out the oxidation number of Fe in K₄[Fe(CN)₆] compound.
The oxidation number of cation, K is +1. Hence, the total charge of the anion, [Fe(CN)₆] is -4. CN has charge has -1. There are 6 CN in anion. Let's assume the oxidation number of Fe is 'a'.
Sum of the oxidation numbers of each element = Charge of the compound
a + 6 x (-1) = -4
a -6 = -4
a = +2
Hence, oxidation number of Fe in [Fe(CN)₆]⁴⁻ is +2.
Now Fe has the atomic number as 26. Hence, number of electrons in Fe at ground state is 26.
Electron configuration = 1s² 2s² 2p⁶ 3s² 3p⁶ 3d⁶ 4s² = [Ar] 3d⁶ 4s²
When making Fe²⁺, Fe releases 2 electrons. Hence, the number of electrons in Fe²⁺ is 26 - 2 = 24.
Hence, the electron configuration of Fe²⁺ = 1s² 2s² 2p⁶ 3s² 3p⁶ 3d⁶
= [Ar] 3d⁶
Hence, the number of 3d electrons of Fe in K₄[Fe(CN)₆] compound is 6.
Answer:
1. 1.25 mol ants x 6.02*10^23 ants/1 mol ants = 7.53*10^23 ants
2. 4.92*10^26 pencils x 1 mol pencils/6.02*10^23 pencils = 817 mol pencils
3. 0.26 mol molecules x 6.02*10^23 molecules/1 mol molecules = 1.6*10^23 molecules
4. 3.46*10^19 molecules x 1 mol molecules/6.02*10^23 molecules = 5.75*10^-5 mol molecules
5. 5.3*10^20 atoms x 1 mol atoms/6.02*10^23 atoms = 8.8 mol atoms
6. 0.11 mol atoms x 6.02*10^23 atoms/1 mol atoms = 6.6*10^22 atoms
I would suggest looking into "dimensional analysis" for help with this type of material. Dimensional analysis will stick with you all throughout chemistry, so picking it up will be extremely beneficial.