Answer:
mass of HNO₃ = 0.378 g
Explanation:
Normality = Molarity * number of equivalents
Molarity = Normality/number of equivalents
normality of HNO₃ = 0.30 N, Volume = 20 mL
HNO₃ ionizes in the following way:
HNO₃(aq) ----> H⁺ + NO₃⁻
Therefore, number of equivalents for HNO₃ is 1
molarity of HNO₃ = 0.30/1 =0.30 mol/dm³
Using the formula, molarity = number of moles/volume in liters
number of moles = molarity * volume
Number of moles of HNO₃ = 0.30 mol/dm³ * 20ml * 1 dm³ /1000 mL
number of moles = 0.006 moles
From the formula, mass = number of moles * molar mass
molar mass of HNO₃ = 63.0 g/mol
mass = 0.006 * 63
mass of HNO₃ = 0.378 g
Answer:
(119 g H2O) / (18.01532 g H2O/mol) x (1 mol Pb / 2 mol H2O) x (207.21 g Pb/mol) = 684 g Pb
Explanation:
1) Chemical equation
Na2 SiO3 (s) + 8 HF (aq) ---> H2 Si F6 (aq) + 2 Na F (aq) + 3H2O (l)
It is balanced
2) Molar ratios
1 mol Na2 SiO3 : 8 mol HF.
3) Proportion
0.340 mol Na2 SiO3 * 8 mol HF / 1mol Na2SiO3 = 2.72 mol HF.
Answer: 2.72 mol HF
Answer:
Explanation:
A chemical formula can be defined as a notation that is used to show which element and how many is contained in a chemical compound.
Also, in chemistry, the sum of charges of the anion and the cation of any ionic compound is always equal to zero.
A chemical equation is considered to be balanced when the amount of reactants on the left is equal to the amount of products on the right.
Therefore;
[2]FeBr3 + [3]Na2S → [1]Fe2S3 + [6]NaBr
In the above chemical equation, we will balance the reactants in the chemical equation with the smallest coefficients possible;
Two (2) moles of Iron (III) Bromide reacts with two (2) moles of Sodium Sulfide to form Iron (III) Sulfide and Sodium Bromide.
The answer is The loudness of sound is related to its amplitude, this is off edmentum exactly so I advise changing up the wording. You can say something about the pitch or you can word it like, The sound of the wave is related to how loud the sound can be. Hope this helped