Explanation:
Regulate body temperature in the extremes of space. maybe
Considering the Charles's law, the sample of carbon dioxide gas will occupy 308.72 mL.
<h3>Charles's law</h3>
Charles's law establishes the relationship between the temperature and the volume of a gas when the pressure is constant. This law says that the volume is directly proportional to the temperature of the gas: for a given sum of gas at constant pressure, as the temperature increases, the volume of the gas increases and as the temperature decreases, the volume of the gas decreases.
Mathematically, Charles's law states that the ratio between volume and temperature will always have the same value:

Considering an initial state 1 and a final state 2, it is fulfilled:

<h3>Final volume in this case</h3>
In this case, you know:
- V1= 250 mL
- T1= 25 C= 298 K (being 0 C=273 K)
- V2= ?
- T2= 95 C= 368 K
Replacing in Charles's law:

Solving:

<u><em>V2= 308.72 mL</em></u>
Finally, the sample of carbon dioxide gas will occupy 308.72 mL.
Learn more about Charles's law:
brainly.com/question/4147359
#SPJ1
Answer:
Yes, Mass is conserved.
Explanation:
Every chemical reactions obey the law of conservation of mass. The law of conservation of mass states that in chemical reactions, mass is always constant.
Equation:
2Na + Cl₂ → 2NaCl
From the equation above, one can observe that the reaction started using 2 atoms of Na and it produced 2 atoms of the same element in NaCl. A molecule of Cl produced 2 atoms of Cl in the NaCl
Design a simple experiment to support your answer:
Aim: To demonstrate the law of conservation of mass
One Na atom weighs 23g
Two Na atom will weigh 2 x 23 = 46g
1 atom of Cl is 35.5g
1 molecule of Cl containing two atoms of Cl will weigh 2 x 35.5 = 71g
Total mass of reactants = mass of 2Na + 1Cl₂ = (46 + 71)g = 117g
On the product side, Mass of 1 NaCl = 23+ 35.5 = 58.5g
Two moles of NaCl will give 2 x 58.5g = 117g
Since the mass on both side is the same, one can say mass is conserved.
Answer:
See explanation.
Explanation:
Hello,
In this case, for the described chemical reaction:
2 HCl(aq) + Mg(OH)2(aq) → MgCl2(aq) + 2 H2O(l)
We can notice there is a 2:1 molar ratio between the moles of hydrochloric acid and magnesium hydroxide, therefore, at the equivalence point:

And in terms of volumes and concentrations we verify:

So we use the given data to proof it:

Therefore, we can conclude the data is wrong by means of the 2:1 mole ratio that for sure was not taken into account. This is also supported by the fact that normalities are actually the same, but the nomality of magnesium hydroxide is the half of the hydrochloric acid normality since the acid is monoprotic and the base has two hydroxyl ions.
Best regards.
Answer:
The Bohr model shows the atom as a central nucleus containing protons and neutrons with the electrons in circular orbitals at specific distances from the nucleus (Figure 1). These orbits form electron shells or energy levels, which are a way of visualizing the number of electrons in the various shells