Answer:
Potential energy is energy due to an object's height above the ground.
Potential energy = mass x gravity x height
Kinetic energy is energy due to the motion of the object.
Kinetic energy = 1/2 x mass x velocity²
A bicycle rusting after it is left in the rain is an example of a chemical reaction because it involves oxidation (Option d).
<h3>What is a chemical reaction?</h3>
A chemical reaction can be defined as a phenomenon in which one or more substances called reactants react to form one or more different compounds, which are known as products.
A chemical reaction may include an enzyme that works to increase the seed of the reaction in normal conditions by lowering the activation energy of the reaction.
Therefore, we can conclude that a chemical reaction such as oxidation in a bicycle is a process where reactants combine or break down to form the products of such reaction.
Complete question:
Which of the following situations contains an example of a chemical reaction?
a. Ice forming after water is placed in a freezer
b. Watercolor paint drying on paper
c. a sugar cube dissolving in a glass of water
d. a bicycle rusting after it is left in the rain
Learn more about chemical reactions here:
brainly.com/question/11231920
#SPJ1
Answer:
Water
Explanation :-
Higher the intermolecular forces between the liquid particles, higher its boiling point.
The independent variable is a variable that is being manipulated or controlled. This is to see how it affects, changes and yields the outcome of the particular stimuli.
The dry ice experiment has an IV of temperature and a DV of melting time.
Answer:
The heat of the reaction is 105.308 kJ/mol.
Explanation:
Let the heat released during reaction be q.
Heat gained by water: Q
Mass of water ,m= 1kg = 1000 g
Heat capacity of water ,c= 4.184 J/g°C
Change in temperature = ΔT = 26.061°C - 25.000°C=1.061 °C
Q=mcΔT
Heat gained by bomb calorimeter =Q'
Heat capacity of bomb calorimeter ,C= 4.643 J/g°C
Change in temperature = ΔT'= ΔT= 26.061°C - 25.000°C=1.061 °C
Q'=CΔT'=CΔT
Total heat released during reaction is equal to total heat gained by water and bomb calorimeter.
q= -(Q+Q')
q = -mcΔT - CΔT=-ΔT(mc+C)

Moles of propane =
0.0422 moles of propane on reaction with oxygen releases 4.444 kJ of heat.
The heat of the reaction will be:
