Answer:
The specific heat (\(c_s\)) of a substance is the amount of energy needed to raise the temperature of 1 g of the substance by 1°C, and the molar heat capacity (\(c_p\)) is the amount of energy needed to raise the temperature of 1 mol of a substance by 1°C. Liquid water has one of the highest specific heats known.
Explanation:
Answer:
Pretty sure the answer is B
We are given ΔG°rxn = -30.5 kJ/mol for the following reaction:
ATP + H₂O → ADP + HPO₄²⁻
We are given a series of concentrations for each of the species and are asked to find the value of ΔG for the reaction. We can use the following formula:
ΔGrxn = ΔG°rxn + RTlnQ
We can use R = 0.008314 kJ/molK; T = 335.15 K and Q is the reaction quotient which can be found as follows, and be sure to first convert each concentration of mM to M:
Q = [ADP][HPO₄²⁻]/[ATP]
Q= [0.00010][0.005]/[0.005]
Q = 0.0001
Now we can use the above formula to solve for ΔGrxn.
ΔGrxn = -30.5 kJ/mol + (0.008314)(310.15)ln(0.00010)
ΔGrxn = -54.3 kJ/mol
The value of ΔGrxn = -54.3 kJ/mol.
idk google it watch me yt channel minecraft supergod pz
Answer:
The food coloring mixes through the hot water faster than it mixes with the cold water. This is because in hot water, thewater molecules have more energy and are moving faster than the molecules of cold water. This makes it easier for the dye to get mixed throughout the hot water.