<u>Answer:</u> The net ionic equation is written below.
<u>Explanation:</u>
Net ionic equation of any reaction does not include any spectator ions.
Spectator ions are defined as the ions which does not get involved in a chemical equation. They are found on both the sides of the chemical reaction when it is present in ionic form.
The chemical equation for the reaction of ammonium carbonate and lead nitrate is given as:

Ionic form of the above equation follows:

As, ammonium and nitrate ions are present on both the sides of the reaction. Thus, it will not be present in the net ionic equation and are spectator ions.
The net ionic equation for the above reaction follows:

Hence, the net ionic equation is written above.
Answer:
C.3
13AL
2.8.3
The number of electrons from the outermost shell is the valence of the element.
Answer:
1.2 × 10⁴ cal
Explanation:
Given data
- Initial temperature: 80 °C
We can calculate the heat released by the water (
) when it cools using the following expression.

where
c is the specific heat capacity of water (1 cal/g.°C)

According to the law of conservation of energy, the sum of the heat released by the water (
) and the heat absorbed by the reaction (
) is zero.

<u>Given:</u>
Mass of pure iron (Fe) = 3.4 g
<u>To determine:</u>
Mass of HBr needed to dissolve the above iron
<u>Explanation:</u>
Reaction between HBr and Fe is
Fe + 2HBr → FeBr₂ + H₂
Based on the reaction stoichiometry-
1 mole of Fe reacts with 2 moles of HBr
# moles of Fe = mass of Fe/atomic mass of Fe = 3.4/56 g.mol⁻¹ = 0.0607 moles
Therefore # moles of HBr = 2*0.0607 = 0.1214 moles
Molar mass of HBr = 81 g/mole
Mass of HBr = 0.1214 moles * 81 g/mole = 9.83 g
Ans: Mass of HBR required is 9.83 g