Answer:
The mass of the Al-duckie should be 30 kg.
Explanation:
We will use the first law of thermodynamics:
ΔU = m·Cv·ΔT
Since the specific heat of water is 4.185 J(gºC), the change in the water's internal energy would be:
ΔU = 100 kg · 4.185 J(gºC) · (42ºC - 38ºC) = 1674 KJ
Given that no heat is lost, all the internal energy that the water loses while cooling down will transfer to the duckie. So, if the duckie has ΔU = 1674 KJ and its final temperature is the desired 38 ºC, we can calculate its mass using the first law again:
![m=\frac{\Delta{U}}{Cv{\Delta{T}}}=\frac{1674}{0.9*[38-(-24)]}=30Kg](https://tex.z-dn.net/?f=m%3D%5Cfrac%7B%5CDelta%7BU%7D%7D%7BCv%7B%5CDelta%7BT%7D%7D%7D%3D%5Cfrac%7B1674%7D%7B0.9%2A%5B38-%28-24%29%5D%7D%3D30Kg)
Momentum = mass • velocity
v= 17.5/2.5
= 7 m/s
Answer:
73N
Explanation:Just multiply 1.2^2 by 50
The scale would need 10 aluminum cubes on one side. Figure out how many paper clips would be needed on the other side to balance this. You have to use more than one aluminum cube because you need to have enough cubes so that you get a whole number mass. 10 cubes gives you a total mass of 27 g for the aluminum.