Answer:
5 seconds
Explanation:
<em>Acceleration = (final velocity - initial velocity) ÷ time</em>
<em>
</em>
<em>
</em>
<em>
</em>
<em>
</em>
<em>
</em>
<em>
</em>
Answer:what is the question exactly
Explanation:
That is because work requires energy. According to the law of conservation of energy, it cannot be created or destroyed. When doing work, energy change forms and gets transferred to the object until it is released.
for example, when you lift up an object and place it on a higher elevation, you transferred energy to it and gave it potential energy. The potential energy is transformed into kinetic energy when the object falls down, and if it hits a surface, the energy will scatter, vibrating the areas around it and producing sound.
Also, work= force X distance. The energy does not go away, but rather get changed into some other form of energy
Answer:
i) 3.514 s, ii) 5.692 m/s
Explanation:
i) We can use Newton's second law of motion to find out how long does it take for the Eagle to touch down.
as the equation says for free-falling
h = ut +0.5gt^2
Here, h = 10 m, g = acceleration due to gravity = 1.62 m/s^2( on moon surface)
initial velocity u = 0
10 = 0.5×1.62t^2
t = 3.514 seconds
Therefore, it takes t = 3.514 seconds for the Eagle to touch down.
ii) use Newton's 1st equation of motion to calculate the velocity of the lunar module when it hits the surface of the moon
v = u + gt
v = 0+ 1.62×3.514
v= 5.692 m/s
Answer:
d) The 2 athletes reach the same height, because the athletes run with the same speed.
Explanation:
In the whole process , kinetic energy is converted into potential energy .
1/2 m v² = mgh
v² = 2gh
h = v² / 2g
In this expression we see that height attained does not depend upon mass of the object . At the same time it also makes it clear that it depends upon velocity . As the velocity in both the cases are same , height attained by both of them will be same. Hence option d ) is correct.