Answer:
v = 120 m/s
Explanation:
We are given;
earth's radius; r = 6.37 × 10^(6) m
Angular speed; ω = 2π/(24 × 3600) = 7.27 × 10^(-5) rad/s
Now, we want to find the speed of a point on the earth's surface located at 3/4 of the length of the arc between the equator and the pole, measured from equator.
The angle will be;
θ = ¾ × 90
θ = 67.5
¾ is multiplied by 90° because the angular distance from the pole is 90 degrees.
The speed of a point on the earth's surface located at 3/4 of the length of the arc between the equator and the pole, measured from equator will be:
v = r(cos θ) × ω
v = 6.37 × 10^(6) × cos 67.5 × 7.27 × 10^(-5)
v = 117.22 m/s
Approximation to 2 sig. figures gives;
v = 120 m/s
First let us calculate for the angle of inclination using
the sin function,
sin θ = 1 m / 4 m
θ = 14.48°
Then we calculate the work done by the movers using the
formula:
W = Fnet * d
So we must calculate for the value of Fnet first. Fnet is
force due to weight minus the frictional force.
Fnet = m g sinθ – μ m g cosθ
Fnet = 1,500 sin14.48 – 0.2 * 1,500 * cos14.48
Fnet = 84.526 N
So the work exerted is equal to:
W = 84.526 N * 4 m
<span>W = 338.10 J</span>
Answer:
Compasses are mainly used in navigation to find direction on the earth. This works because the Earth itself has a magnetic field which is similar to that of a bar magnet. The compass needle aligns with the Earth's magnetic field direction and points north-south. Also, In a magnet all the domains are oriented in the same direction. In the case of a nail, the domains can be aligned in the same direction causing the nail to become magnetic. That is because if you hang a bar magnet from a thread, the north pole will point to magnetic north. When you bring one north pole close to another north pole they repel each other. You can feel the two magnets pushing each other apart.
Answer:
A. the speed of a reaction
Explanation:
The thermodynamic aspect of a reaction will show you the energy needed for a reaction to occur. If the energy difference(ΔG) is positive, which means the reaction is absorbing energy and it called endothermically. The opposite will be an exothermic reaction that will release energy, which means it doesn't need energy and the energy difference (ΔG) will be negative.
Thermodynamic can be used to determine a few things of a reaction, like the direction of the reaction, the extent, or temperature in which the reaction is spontaneous. But thermodynamic not used to find the speed of a reaction.