Answer:
The magnitude of the maximum possible torque exerted on the coil is 5.73 x 10⁻³ Nm
Explanation:
Given;
number of turns of the circular coil, N = 49.5 turns
radius of the coil, r = 5.10 cm = 0.051 m
magnitude of the magnetic field, B = 0.535 T
current in the coil, I = 26.5 mA = 0.0265 A
The magnitude of the maximum possible torque exerted on the coil is calculated as;
τ = NIAB
where;
A is the area of the coil
A = πr² = π(0.051)² = 0.00817 m²
Substitute the given values and solve for the maximum torque
τ = (49.5) x (0.0265) x (0.00817) x (0.535)
τ = 0.00573 Nm
τ = 5.73 x 10⁻³ Nm
 
        
             
        
        
        
Answer:
B
Good luck! Have a great day!
 
        
                    
             
        
        
        
<h2>
Answer:</h2><h3>
<em><u>Alexander Graham Bell</u></em></h3><h2>
Explanation:</h2>
Alexander Graham Bell is often credited as the inventor of the telephone since he was awarded the first successful patent.
 
        
        
        
Answer:
245.45km in a direction 21.45° west of north from city A
Explanation:
Let's place the origin of a coordinate system at city A.
The final position of the airplane is given by:
rf = ra + rb + rc    where ra, rb and rc are the vectors of the relative displacements the airplane has made. If we separate this equation into its x and y coordinates:
rfX = raX+ rbX + rcX = 175*cos(30)-150*sin(20)-190 = -89.75km
rfY = raY + rbY + rcT = 175*sin(30)+150*cos(20) = 228.45km
The module of this position is:

And the angle measure from the y-axis is:

So the answer is 245.45km in a direction 21.45° west of north from city A