The magnitude of velocity for this car is equal to 1.5 m/s.
<u>Given the following data:</u>
- Momentum of car = 3,000 kgm/s.
To calculate the magnitude of velocity for this car:
<h3>What is momentum?</h3>
In Science, momentum simply means a multiplication of the mass of an object and its velocity.
Mathematically, momentum is giving by the formula;

Making velocity the subject of formula, we have:

Substituting the given parameters into the formula, we have;

Velocity = 1.5 m/s.
Read more on momentum here: brainly.com/question/15517471
To solve this problem it is necessary to apply the concepts related to the kinematic equations of movement description, which determine the velocity, such as the displacement of a particle as a function of time, that is to say

Where,
x = Displacement
v = Velocity
t = Time
Our values are given as,


Replacing we have that,



Therefore the distance from Earth to the Moon is 399.000 km
v^2 = v0^2 +2ad
v^2 = 22^2 + 2*3.78*45 = 824.2
v= √824.2 = 28.7 m/s
Answer:
b) The star is moving away from us.
Explanation:
If an object moves toward us, the light waves it emits are compressed - the wavelength of the light will be shorter, making the light bluer. On the other hand, if an object moves away from us, the light waves are stretched, making it redder. If from laboratory measurements we know that a specific hydrogen spectral line appears at the wavelength of 121.6 nanometers (nm) and the spectrum of a particular star shows the same hydrogen line appearing at the wavelength of 121.8 nm, we can conclude that the star is moving away from npos, since the wavelength related to that star is more expanded.
Our eyes are detectors which are designed to detect visible light waves (or visible radiation). ... The electromagnetic spectrum includes gamma rays, X-rays, ultraviolet, visible, infrared, microwaves, and radio waves. The only difference between these different types of radiation is their wavelength or frequency.