Answer:
The object in a uniform motion covers same distances in an equal time period. Objects in a non-uniform motion cover dissimilar distances in an equal time period.
Explanation:
The speed of the object traveling in uniform motion is constant, the actual speed and the average speed of the moving body is same.
Answer:
The frequency increases.
Explanation:
When the Musician draws the slide in the length of the horn gets shorter, which causes a decrease in the wavelength. A decrease in the wave length results in an increase in frequency.
Note:
The diameter of the horn has an effect on frequency, so a wider horn is effectively a long horn - open end correction ( distance between the the antinode and the open end of a pipe).
Frequency also depends on how hard the musician blows the trombone. The musician can change the frequency with the lip pressure being applied.
Answer:
v2 = 27.3m/s
Explanation:
Assuming forward as positive.
Mass = m1 = 64kg
Let v be the common velocity of the student and the skateboard.
mass of skateboard = m2 = 5.94kg
v = 1.4m/s
Since the skateboard and the student are initially moving together at the same velocity their momentum together is
(m1 + m2)v
Let the final velocity of the student be v1 and the final velocity of the skateboard be v2
v1 = – 1.0m/s (falls backwards that's why the velocity is negative since we are assuming forward as positive)
Then from conservation of momentum, momentum before is equal to momentum after.
(m1 + m2)v = m1v1 + m2v2
m2v2= (m1 + m2)v – m1v1
v2 = ( (m1 + m2)v – m1v1)/m2
v2 = ( (64 + 5.94)×1.4 – 64×(-1.0))/5.94
v2 = ( (64 + 5.94)×1.4 + 64×1.0)/5.94
v2 = 27.3m/s
The largest resultant amplitude would be that created by constructive interference, basically when the two waves are of the same phase, so it would be 0.36m+0.22m= 0.58 m.
Answer:
All of the above
Explanation:
because these are all senses of the body and therefore you're receiving signals from all of them all the time