Answer:
d = 90 ft
Explanation:
As we know that after each bounce it reaches to 4/5 times of initial height
so we can say
so the distance covered is given as
here we know that
h = 10 feet
Option(a) the mass of cart 2 is twice that of the mass of cart 1 is the right answer.
The mass of cart 2 is twice that of the mass of cart 1 is correct about the mass of cart 2.
Let's demonstrate the issue using variables:
Let,
m1=mass of cart 1
m2=mass of cart 2
v1 = velocity of cart 1 before collision
v2 = velocity of cart 2 before collision
v' = velocity of the carts after collision
Using the conservation of momentum for perfectly inelastic collisions:
m1v1 + m2v2 = (m1 + m2)v'
v2 = 0 because it is stationary
v' = 1/3*v1
m1v1 = (m1+m2)(1/3)(v1)
m1 = 1/3*m1 + 1/3*m2
1/3*m2 = m1 - 1/3*m1
1/3*m2 = 2/3*m1
m2 = 2m1
From this we can conclude that the mass of cart 2 is twice that of the mass of cart 1.
To learn more about inelastic collision visit:
brainly.com/question/14521843
#SPJ4
Answer:
B
Explanation:
this is because the neutrons do not have a charge, the things that have charge in an atom are electrons and protons.
and in the nucleus of an atom, there are protons and neutrons so you can see that A is not the answer
if you see the periodic table, you will know that the number of electrons and protons are equal, so the charges cancel each other out, hence the charge of an atom will be neutral
let me give you a tip which I got from my teacher, never write there is no charge in the atom, this suggests that there is no protons or electrons.
instead, write, the it is neutral
hope it helps if not please report it so that someone else gets to try it out
The forces that make a passenger speed up, slow down, or
turn a curve are the same forces that have the same effect
on the driver and anybody else in the car.
-- Speeding up . . .
the back of the seat
friction between the car seat and the seat of your pants
-- Slowing down . . .
the seat belt
friction between the car seat and the seat of your pants
-- Turning away from a straight line . . .
the seat belt
friction between the car seat and the seat of your pants
the door, or whatever or whomever you're leaning against