An electric motor is an electrical machine that converts electrical energy into mechanical energy.
Electric motors work on the principal of the interaction between magnetic field electr-magnetism. A loop which is carrying the current is placed in a magnetic field. The loop will experience a torque. The torque starts rotating the coil and the propellers start to rotate when the current passes through the loop.
        
                    
             
        
        
        
The magnitude of the E-field decreases as the square of the distance from the charge, just like gravity.
Location ' x ' is  √(2² + 3²) = √13 m  from the charge.
Location ' y ' is √ [ (-3)² + (-2)² ] = √13 m from the charge.
The magnitude of the E-field is the same at both locations.
The direction is also the same at both locations ... it points toward the origin.
        
             
        
        
        
You will have to fly around the whole earth to get to your landing station
        
             
        
        
        
Answer: V = 15 m/s
Explanation:
As  stationary speed gun emits a microwave beam at 2.10*10^10Hz. It reflects off a car and returns 1030 Hz higher. The observed frequency the car will be experiencing will be addition of the two frequency. That is,
F = 2.1 × 10^10 + 1030 = 2.100000103×10^10Hz
Using doppler effect formula
F = C/ ( C - V) × f
Where
F = observed frequency
f = source frequency
C = speed of light = 3×10^8
V = speed of the car
Substitute all the parameters into the formula
2.100000103×10^10 = 3×10^8/(3×10^8 -V) × 2.1×10^10
2.100000103×10^10/2.1×10^10 = 3×108/(3×10^8 - V)
1.000000049 = 3×10^8/(3×10^8 - V)
Cross multiply
300000014.7 - 1.000000049V = 3×10^8
Collect the like terms
1.000000049V = 14.71429
Make V the subject of formula
V = 14.71429/1.000000049
V = 14.7 m/s
The speed of the car is 15 m/s approximately.