Answer: a= 37m
Explanation: V= 15 m/s (Velocity) t= 0.41s (time) formula: a= v/t
15 m/s / 0.41 (15 divided by 0.41) = 36.583m
There are 2 significant digits, 36, you look at the third digit, either round up or down in this case up to 36. a= 37m
Helium (He) does not have the same number of valence electrons as other elements in its group.
The periodic table is divided into groups with the last number of the group coinciding with the number of electrons that an element in the group has in its outermost or valence shell.
Helium is in group 18 which means that it should have the same number of valence electrons as :
- Neon
- Argon
- Krypton
- Xenon and,
- Radon
Yet Helium only has 2 valence electrons. We can therefore conclusively say that Helium does not have the same number of valence electrons as other elements in its group.
<em>More information is available at brainly.com/question/20944279. </em>
Answer:

Explanation:
First, we calculate the work done by this force after the box traveled 14 m, which is given by:
![W=\int\limits^{x_f}_{x_0} {F(x)} \, dx \\W=\int\limits^{14}_{0} ({18N-0.530\frac{N}{m}x}) \, dx\\W=[(18N)x-(0.530\frac{N}{m})\frac{x^2}{2}]^{14}_{0}\\W=(18N)14m-(0.530\frac{N}{m})\frac{(14m)^2}{2}-(18N)0+(0.530\frac{N}{m})\frac{0^2}{2}\\W=252N\cdot m-52N\cdot m\\W=200N\cdot m](https://tex.z-dn.net/?f=W%3D%5Cint%5Climits%5E%7Bx_f%7D_%7Bx_0%7D%20%7BF%28x%29%7D%20%5C%2C%20dx%20%5C%5CW%3D%5Cint%5Climits%5E%7B14%7D_%7B0%7D%20%28%7B18N-0.530%5Cfrac%7BN%7D%7Bm%7Dx%7D%29%20%5C%2C%20dx%5C%5CW%3D%5B%2818N%29x-%280.530%5Cfrac%7BN%7D%7Bm%7D%29%5Cfrac%7Bx%5E2%7D%7B2%7D%5D%5E%7B14%7D_%7B0%7D%5C%5CW%3D%2818N%2914m-%280.530%5Cfrac%7BN%7D%7Bm%7D%29%5Cfrac%7B%2814m%29%5E2%7D%7B2%7D-%2818N%290%2B%280.530%5Cfrac%7BN%7D%7Bm%7D%29%5Cfrac%7B0%5E2%7D%7B2%7D%5C%5CW%3D252N%5Ccdot%20m-52N%5Ccdot%20m%5C%5CW%3D200N%5Ccdot%20m)
Since we have a frictionless surface, according to the the work–energy principle, the work done by all forces acting on a particle equals the change in the kinetic energy of the particle, that is:

The box is initially at rest, so
. Solving for
:

Well, if you're using the law to work with periods of Earth satellites,
then the most convenient unit is going to be 'hours' for the largest
orbits, or 'minutes' for the LEOs.
But if you're using it to work with periods of planets, asteroids, or
comets, then you'd be working in days or years.