The correct answer would be A
Explanation: I did the math
        
             
        
        
        
Its most significant when all other forces are absent
        
             
        
        
        
The answer is; C
The radioisotopes in the interior of the earth are not in pure form and have many embedded impurities and are interspersed. Therefore when a neutron is released by a decaying atom, its chances of hitting another radioisotope atom (to continue the chain reaction) are lower than in a manmade nuclear reactor. This way, the radioactive chain reaction in the earth’s interior is not well sustained. 
 
        
                    
             
        
        
        
For the chemical reactiom to be at equilibrium:
1- The rate of forward reaction must be equal to the rate of the reverse reaction.
2- The mass of EACH element must be equal before and after the reaction (no NET change in mass), otherwise the equilibrium will shift.
Important note: you need to check the mass of each element before and after the reaction (i.e, reactants side and products side) and the not the mass of the system as a whole. This is because the mass of the whole system will be preserved whether the system is at equilibrium or not (this is the fundamental law of mass conservation)