Freezing, condensation, Deposition.
Answer:
The answer to the question is
The specific heat capacity of the alloy = 1.77 J/(g·°C)
Explanation:
To solve this, we list out the given variables thus
Mass of alloy = 45 g
Initial temperature of the alloy = 25 °C
Final temperature of the alloy = 37 °C
Heat absorbed by the alloy = 956 J
Thus we have
ΔH = m·c·(T₂ - T₁) where ΔH = heat absorbed by the alloy = 956 J, c = specific heat capacity of the alloy and T₁ = Initial temperature of the alloy = 25 °C , T₂ = Final temperature of the alloy = 37 °C and m = mass of the alloy = 45 g
∴ 956 J = 45 × C × (37 - 25) = 540 g·°C×c or
c = 956 J/(540 g·°C) = 1.77 J/(g·°C)
The specific heat capacity of the alloy is 1.77 J/(g·°C)
Answer:
0.014mol
Explanation:
Given parameters:
Mass of Na₂CO₃ = 1.5g
Unknown:
Number of moles = ?
Solution:
Number of moles of a compound is mathematically expressed as;
Number of moles =
Molar mass of Na₂CO₃ = 2(23) + 12 + 3(16) = 106g/mol
Number of moles =
= 0.014mol
BaO, Barium Oxide.
Na2SO4, Sodium Sulfate.
CuO, Copper (II) Oxide.
P2O5, Diphosphorus Pentoxide.
HNO3, Nitric Acid.
CO32-, Molecular Formula.
Hope this helps. :)
Answer:
126.8, Iodine
Explanation:
- mass ×abundance/100
- (126.9045×80.45/100)+(126.0015×17.23/100)+(128.2230×2.23/100)
- 102.1+21.7+3=126.8
<em>IODINE</em><em> </em><em>has</em><em> </em><em>an</em><em> </em><em>atomic</em><em> </em><em>mass</em><em> </em><em>of</em><em> </em>126.8 or 126.9