Answer: at higher temperatures.
Justification:
1) Soda have CO₂ dissolved. Carbonation consists on that: dissolving CO₂ into water, leading to carbonated water.
2) The solution of a gas into a liquid is inversely related to the temperature: the lower the temperature the more gas gets dissolved.
So, in the manufacturing of soda, the CO₂ is added in cool water in a cool environment.
3) So, the higher the temperature after the soda is delivered, the more gas will be liberated when you open the can.
D. The particles are tightly packed together
Aluminum. chemical element with symbol Al
<h2>Collision Theory
</h2>
Explanation:
<h3>
The given statement is related to the collision theory -
</h3>
Collision theory was given by William Lewis in 1916.
This theory explains in a qualitative manner that in what way any chemical reaction occurs and the reason for the different reaction rates for different reactions.
<h3>
According to the collision theory -
</h3>
- Molecules must collide in order to react
- Sufficient amount of energy is needed for collisions (kinetic energy) so that the chemical bonds should break
- This energy used is known as the activation energy
- On the increase in the temperature, the kinetic energy of the molecule increases and the molecules move faster and collide with a proper orientation at an increased speed
- This increases the rate of a collision that in turn increases the breaking of the bond
Answer: -
1.34 L
Explanation: -
Initial Pressure P 1 = 39.1 bar
Initial Temperature T 1 = 643 K
Let the initial volume be V 1.
Final pressure P 2 = 87.0 bar
Final temperature T 2 = 525 K.
Final volume V 2 = 0.492 L
Using the equation


Plugging in the values
We have
V 1 = 87 bar x 0.492 L x 643 K / (39.1 bar x 525 K)
= 1.34 L
Thus, a gas is contained in a thick-walled balloon. When the pressure changes from 39.1 bar to 87.0 bar the volume changes from 1.34 L to 0.492L and the temperature changes from 643K to 525K