Answer:
- <em>(B.) The pH of a buffer solution is determined by the ratio of the concentration of conjugate base to the concentration of strong acid.</em>
- <em>(C.) A buffer is generally made up of a weak acid and its conjugate base. </em>
- <em>(D.) The pH of a buffer solution does not change significantly when any amount of a strong acid is added.</em>
Explanation:
A buffer is solution which resists change in pH upon addition of either acids or bases.
The pH of a buffer is calculated by the ratio of the concentration of base to concentration of acid. The weak acid and conjugate base have a Ka similar to the pH desired.
Answer:
The correct answer is Density
Explanation:
Hope this helps you
Correct answer There are 68 grams are in atoms
We do a heat balance to solve this:
(m cp ΔT)water = -(m cp ΔT)metal
100.8 (4.18) (27 - 22) = -65 (cp)(27-100)
cp = 100.8 (4.18) (27 - 22) / (-65 (27-100))
cp = 0.44 J/ (°C × g)
The specific heat of the metal is 0.44 J/ (°C × g)
Answer:
The name of this compound is :
Bi2(CO3)3 = Bismuth Carbonate
Explanation:
The name of the compound is derived from the name of the elements present in it.
The rule followed while naming the compound are:
1. The first element (always the cation) is named as such .
2. The second element (The anion) end with "-ate , -ide ," etc
3. NO prefix is added while naming the first element.
For example : Bi2 can't be named as Dibismuth
Na2 = Can't be named as disodium
Hence the compound :
Bi2(CO3)3 contain two element : Bi and CO3. Here , Bi = cation (named as such) and CO3 = anion (named according to rules)
Bi = Bismuth
CO3 = carbonate
Bi2(CO3)3 = Bismuth Carbonate
The molecular mass of this compound is :
Molecular mass = 2 (mass of Bi) + 3(mass of C) + 6(mass of O)
= 2 (208.98)+3(12.01)+6(15.99)
= 597.987 u