Stored mechanical energy is energy stored and awaiting to be used and mechanical energy is the energy that was stored being used.
Answer:
Final Temperature = 36.54 ⁰C
Explanation:
Lets suppose the gas is acting ideally, then according to Charle's Law, "<em>The volume of a fixed mass of gas at constant pressure is directly proportional to the absolute temperature</em>". Mathematically for initial and final states the relation is as follow,
V₁ / T₁ = V₂ / T₂
Data Given;
V₁ = 32 L
T₁ = 10 °C = 283.15 K ∴ K = °C + 273.15
V₂ = 35 L
T₂ = ??
Solving equation for T₂,
T₂ = V₂ × T₁ / V₁
Putting values,
T₂ = (35 L × 283.15 K) ÷ 32 L
T₂ = 309.69 K ∴ ( 36.54 °C )
Result:
As the volume is increased from 32 L to 35 L, therefore, the temperature must have increased from 10 °C to 36.54 °C.
Answer:
Explanation:
In the solution of AB , they are split to give ions as follows
AB ⇄ A⁺ + B⁻
Product of concentration of A⁺ and B⁻ in saturated solution of AB is constant .
This is called Ksp
Ksp = [A⁺] [ B⁻]
If product of concentration of A⁺ and B⁻ exceeds Ksp , the equilibrium shifts to the left side and excess ions come out of solution in the form of precipitate. So second option is the answer.
Answer : The fuel value and the fuel density of pentane is, 49.09 kJ/g and
respectively.
Explanation :
Fuel value : It is defined as the amount of energy released from the combustion of hydrocarbon fuels. The fuel value always in positive and in kilojoule per gram (kJ/g).
As we are given that:

Fuel value = 
Molar mass of pentane = 72 g/mol
Fuel value = 
Fuel value = 49.09 kJ/g
Now we have to calculate the fuel density of pentane.
Fuel density = Fuel value × Density
Fuel density = (49.09 kJ/g) × (0.626g/mL)
Fuel density = 30.73 kJ/mL = 
Thus, the fuel density of pentane is 