Answer:
Explanation:
There are three types of interactions involved between the particles when solution are formed.
1 : Solute - solute interaction:
2 : Solute - solvent interaction:
3 : Solvent - solvent interaction:
1 : Solute - solute interaction:
It is the inter-molecular attraction between the solute particles.
2 : Solute - solvent interaction:
It involve the inter-molecular attraction between solvent and solute particles.
3 : Solvent - solvent interaction:
It involve the intermolecular attraction between solvent particles.
Solutions are formed if the intermolecular attraction between solute particles are similar to the attraction between solvent particles.
Exothermic process:
The process will exothermic when solute solvent bonds are formed with the release of energy and energy required to brake the solute-solute particles and solvent solvent particles are less.
Endothermic process:
The process will be endothermic when energy required to break the solute-solute particles and solvent solvent particles are higher than energy released when solute solvent bonds are formed .
The rate of movement increases, as they get faster with more energy.
Ionic bond is formed by two opposite type of substances (metal and non-metal) while both covalent or metallic bond is formed by two same type of substances (non-metal and non-metal form covalent bond, metal and metal form metallic bond). Idk if it's true or not.
Answer:
See the answer below
Explanation:
<em>The slide could have broken due to the ramming of the objective (especially the high power objectives) into the slide on the stage of the microscope while trying to bring the object on the slide into focus.</em>
It is recommended to <u>start with the lowest objective while trying to focus a slide</u>. Thereafter, the next higher objective can be switched to and the image brought into focus once again. This can be repeated until the desired magnification of the image is reached.
However, <u>at higher objective powers, the coarse adjustment knob should be avoided </u>to avoid the objectives touching/breaking the slide. Instead, the fine adjustment knob should be used.
Hence, the breaking of the slide in the illustration could have been due to the use of the coarse adjustment knob at higher objective powers and the ramming of the objective into the slide.