Following are the possible isomers of secondary alcohol and ketones for six carbon molecules. In order to distinguish between sec. alcohol and ketone we can simply treat the unknown compound with acidified Potassium Dichromate (VI) in the presence of acid. If with treatment with unknown compound the colour of K2Cr2O7 (potassium dichromate VI) changes from orange to green then it is confirmed that the unknown compound is sec. alcohol, or if no change in colour is detected then ketone is confirmed. This is because ketone can not be further oxidized while, sec. alcohol can be oxidized to ketones as shown below,
Can you show me the passage?
Answer:(4) ----accepts a proton
Explanation:
H2O water can produce both hydrogen and hydroxide ions
H2O --> H+ + OH-
According to the Bronsted-Lowry theory, it can be a proton donor and a proton acceptor.this means that It can donate a hydrogen ion to become its conjugate base, or can accept a hydrogen ion to form its conjugate acid,
When , a water molecule, H2O accepts a proton it will act as a Brønsted-Lowry base especially when dissolved in a strong acidic medium. for eg
HCl + H2O(l) → H3O+(aq) + Cl−(aq)
Here, Hydrochloric acid is a strong acid and ionizes completely in water, since it is more acidic than water, the water will act as a base.
Answer:
It is called Ionization Energy.
Answer:
Explanation:
1 mol of methane = 6.02 * 10^23 molecules
6.70 mol of methane = x
Cross multiply
x = 6.70 * 6.02 * 10^23
x = 4.033 * 10^23 molecules.