Answer: 800 mL of methyl alcohol should be added to 200 ml of water to make this solution.
Explanation:
Volume of the methyl alcohol = x
Volume of water = y = 200 mL
Volume of the solution ,V = x + y
Volume percentage of solution = 80%
x = 800 mL
800 mL of methyl alcohol should be added to 200 ml of water to make this solution.
Answer:
<em>Your</em><em> </em><em>answer </em><em>is</em><em> </em><em>in</em><em> </em><em>the</em><em> </em><em>attachment</em><em>.</em><em> </em><em>Hope</em><em> </em><em>this</em><em> </em><em>helps</em><em> </em><em>you</em><em>.</em><em> </em><em>Stay</em><em> </em><em>blessed</em><em>.</em><em> </em>
4NH3+5O2 <=>4NO + 6H2O
Using the definition of Kp, we have
Kp=(Pno^4*Ph2o^6)/(Pnh3^4*Po2^5)
where Pno=partial pressure of NO, etc.
The numerical value for a given temperature can be evaluated when the actual partial pressures are known.
The element of the group 17 that is most active non metal is fluorine.
The group 17 of the periodic table contains bromine(Br), iodine(I), Chlorine(Cl) and fluorine(F).
Among all the elements of the group 17. Fluorine is the smallest in size.
Because of the small size of fluorine it has the highest electronegativity in group 17.
This high electronegativity makes it a very active non metal. It provides a very high oxidizing power and low dissociation energy to the fluorine atom.
Also because of the very small size the source of attraction between the nucleus and the electrons is very high in floor in atom.
It reacts readily to form oxides and hydroxides.
So, we can conclude here that fluorine is the most active non metal of group 17.
To know more about group 17, visit,
brainly.com/question/26440054
#SPJ4
Answer:
It will be reported too low.
Explanation:
To measure the specific heat of the metal (s), the calorimeter may be used. In it, the metal will exchange heat with the water, and they will reach thermal equilibrium. Because it can be considered an isolated system (there're aren't dissipations) the total amount of heat (lost by metal + gained by water) must be 0.
Qmetal + Qwater = 0
Qmetal = -Qwater
The heat is the mass multiplied by the specific heat multiplied by the temperature change. If c is the specific heat of the water:
m_metal*s*ΔT_metal = - m_water *c*ΔT_water
s = -m_water *c*ΔT_water / m_metal*ΔT_metal
So, if m_water is now less than it was supposed to be, s will be reported too low, because they are directly proportional.