The main difference between the model of the atom proposed by Greek philosophers and the model proposed centuries later by Dalton is that the Greek one was mainly speculative and philosophical - it wasn't based on real evidence, but on their suggestions and thoughts about the matter. On the other hand, Dalton had the means to prove his theory using viable evidence, not just speculations.
Answer:
19 N
Explanation:
From the question given above, the following data were obtained:
Pressure (P) = 1.9 kPa
Length (L) = 10 cm
Force (F) =?
Next, we shall convert 1.9 KPa to N/m². This can be obtained as follow:
1 KPa = 1000 N/m²
Therefore,
1.9 KPa = 1.9 KPa × 1000 N/m² / 1 KPa
1.9 KPa = 1900 N/m²
Thus, 1.9 KPa is equivalent to 1900 N/m².
Next, we shall convert 10 cm to m. This can be obtained as follow:
100 cm = 1 m
Therefore,
10 cm = 10 cm × 1 m / 100 cm
10 cm = 0.1 m
Thus, 10 cm is equivalent to 0.1 m
Next, we shall determine the area of the square. This can be obtained as follow:
Length (L) = 0.1 m
Area of square (A) =?
A = L²
A = 0.1²
A = 0.01 m²
Thus, the area of the square is 0.01 m².
Finally, we shall determine the force that must be exerted on the sensor in order for it to turn red. This can be obtained as follow:
Pressure (P) = 1900 N/m²
Area (A) = 0.01 m²
Force (F) =?
P = F/A
1900 = F / 0.01
Cross multiply
F = 1900 × 0.01
F = 19 N
Therefore, a force of 19 N must be exerted on the sensor in order for it to turn red.
Its B: reduce the amount of energy needed to do the work by putting the work onto something else
Answer:
1) Current decreases; 2) Inverse proportionally; 3) 1[A]
Explanation:
1)
As we can see as the resistance increases the current decreases, if we take two points as an example, when the resistance is equal to 50 [ohms] the current is equal to 1[amp] and when the resistance is equal to 200 [ohms] the current tends to have a value below 0.5 [amp]. Thus demonstrating the decrease in current.
2)
Inverse proportionally, by definition we know that the law of ohm determines the voltage according to resistance and amperage. This is the voltage will be equal to the product of the voltage by the resistance.
where:
And whenever we have in a fractional number the denominator the variable we are interested in, we can say that this is inversely proportional to the value we are interested in determining. In this case, we can see from the two previous expressions that both the current and the resistance appear in the denominator, therefore they are inversely proportional to each other.
3)
If we place ourselves on the graph on the resistance axis, we see that at 50 [ohm] will correspond a current value equal to 1 [A].