1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
KIM [24]
3 years ago
10

A solid cylinder of mass M = 45 kg, radius R = 0.44 m and uniform density is pivoted on a frictionless axle coaxial with its sym

metry axis. A particle of mass m = 3.6 kg and initial velocity v0 = 3.3 m/s (perpendicular to the cylinder’s axis) flies too close to the cylinder’s edge, collides with the cylinder and sticks to it.Before the collision, the cylinder was not rotating. What is the magnitude of its angular velocity after the collision?
Physics
1 answer:
user100 [1]3 years ago
5 0

Answer:

w_f = 1.0345 rad/s

Explanation:

Given:

- The mass of the solid cylinder M = 45 kg

- Radius of the cylinder R = 0.44 m

- The mass of the particle m = 3.6 kg

- The initial speed of cylinder w_i = 0 rad/s

- The initial speed of particle V_pi = 3.3 m/s

- Mass moment of inertia of cylinder I_c = 0.5*M*R^2

- Mass moment of inertia of a particle around an axis I_p = mR^2

Find:

- What is the magnitude of its angular velocity after the collision?

Solution:

- Consider the mass and the cylinder as a system. We will apply the conservation of angular momentum on the system.

                                     L_i = L_f

- Initially, the particle is at edge at a distance R from center of cylinder axis with a velocity V_pi = 3.3 m/s contributing to the initial angular momentum of the system by:

                                    L_(p,i) = m*V_pi*R

                                    L_(p,i) = 3.6*3.3*0.44

                                    L_(p,i) = 5.2272 kgm^2 /s

- While the cylinder was initially stationary w_i = 0:

                                    L_(c,i) = I*w_i

                                    L_(c,i) = 0.5*M*R^2*0

                                    L_(c,i) = 0 kgm^2 /s

The initial momentum of the system is L_i:

                                    L_i = L_(p,i) + L_(c,i)

                                    L_i = 5.2272 + 0

                                    L_i = 5.2272 kg-m^2/s

- After, the particle attaches itself to the cylinder, the mass and its distribution around the axis has been disturbed - requires an equivalent Inertia for the entire one body I_equivalent. The final angular momentum of the particle is as follows:

                                   L_(p,f) = I_p*w_f

- Similarly, for the cylinder:

                                   L_(c,f) = I_c*w_f

- Note, the final angular velocity w_f are same for both particle and cylinder. Every particle on a singular incompressible (rigid) body rotates at the same angular velocity around a fixed axis.

                                  L_f = L_(p,f) + L_(c,f)

                                  L_f = I_p*w_f + I_c*w_f

                                  L_f = w_f*(I_p + I_c)

-Where, I_p + I_c is the new inertia for the entire body = I_equivalent that we discussed above. This could have been determined by the superposition principle as long as the axis of rotations are same for individual bodies or parallel axis theorem would have been applied for dissimilar axes.

                                  L_i = L_f

                                  5.2272 = w_f*(I_p + I_c)

                                  w_f =  5.2272/ R^2*(m + 0.5M)

Plug in values:

                                  w_f =  5.2272/ 0.44^2*(3.6 + 0.5*45)

                                  w_f =  5.2272/ 5.05296

                                  w_f = 1.0345 rad/s

You might be interested in
A. What are the three longest wavelengths for standing waves on a 240-cm-long string that is fixed at both ends?
vovangra [49]

Answer:

a) the three longest wavelengths = 4.8m, 2.4m, 1.6m

b) what is the frequency of the third-longest wavelength = 75Hz

Explanation:

The steps and appropriate formula and substitution is as shown in the attached file.

5 0
3 years ago
What statement is true about earth tectonic plates
DaniilM [7]
Continent jig-saw shapes when puzzled and combined together, formed one big continent - Pangea, and was separated by drifts.

Fossil comparisons of different species were discovered into two different, separated continents in which when you combine them, they were one in the past.

Seismic, volcanic, and geothermal activity are found along imagined plate boundaries. 

Plates were actually rubbing against each other as evidence is seen on the formed mountain ranges.
<span>
Paleomagnetism, magnetic field placement in the layers of the rock are present.</span>
3 0
3 years ago
Read 2 more answers
A cart traveling at 0.3 m/s collides with stationary object. After the collision, the cart rebounds in the opposite direction. T
Nady [450]
The first collision because a greater amount of momentum must be taken and used in order to push the cart back, giving it a greater mass and impulse
6 0
3 years ago
If you traveled one mile at a speed of 100 miles per hour and another mile at a speed if 1 mile per hour, your average speed wou
Semenov [28]

Answer:

v = 1.98 mph

Explanation:

Given that,

Speed to travel one mile is 100 mph

Speed to travel another mile is 1 mph

The formula used to find your average speed is given by :

v=\dfrac{2v_1v_2}{v_1+v_2}

Putting the values, we get :

v=\dfrac{2\times 100\times 1}{100+1}

v = 1.98 mph

So, yours average speed is 1.98 mph.

7 0
3 years ago
How efficient are the small and large scale solar-power systems used in individual homes and industrial settings? What is the en
Leviafan [203]

Answer:

\color{Blue}\huge\boxed{Answer}

<em>The potential environmental impacts associated with solar power—land use and habitat loss, water use, and the use of hazardous materials in manufacturing—can vary greatly depending on the technology, which includes two broad categories: photovoltaic (PV) solar cells or concentrating solar thermal plants (CSP).</em>

Explanation:

I just answer the second question

4 0
3 years ago
Other questions:
  • From Earth to the center of our galaxy is about 300,000 light years, meaning that light coming from a star in the center of our
    13·2 answers
  • A brass bar, density 9.87g/cm3, has a volume of 20.25cm3. What is the mass of this brass bar?
    8·1 answer
  • You are in your car at rest when the traffic light turns green. You place your coffee cup on the horizontal dash and hit the gas
    9·1 answer
  • 3.3 kg block is on a perfectly smooth ramp that makes an angle of 52° with the horizontal. (a) What is the block's acceleration
    5·1 answer
  • The driver of a car slams on the brakes when he sees a tree blocking the road. The car slows uniformly with an acceleration of -
    5·1 answer
  • What happens to the amount of friction if you increase the mass of an object?
    5·2 answers
  • 2.
    5·1 answer
  • A student drove to the university from her home and noted that the odometer reading of her car increased by 12.0 km. The trip to
    13·1 answer
  • A cubic meter (m³) is ______ a cubic centimeter (cm³).
    13·1 answer
  • The potential difference between points A and B in an electric
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!