Answer:
a. 
b. 
c. 
Explanation:
First, look at the picture to understand the problem before to solve it.
a. d1 = 1.1 mm
Here, the point is located inside the cilinder, just between the wire and the inner layer of the conductor. Therefore, we only consider the wire's current to calculate the magnetic field as follows:
To solve the equations we have to convert all units to those of the international system. (mm→m)

μ0 is the constant of proportionality
μ0=4πX10^-7 N*s2/c^2
b. d2=3.6 mm
Here, the point is located in the surface of the cilinder. Therefore, we have to consider the current density of the conductor to calculate the magnetic field as follows:
J: current density
c: outer radius
b: inner radius
The cilinder's current is negative, as it goes on opposite direction than the wire's current.




c. d3=7.4 mm
Here, the point is located out of the cilinder. Therefore, we have to consider both, the conductor's current and the wire's current as follows:

As we see, the magnitud of the magnetic field is greater inside the conductor, because of the density of current and the material's nature.
Answer:
B
Explanation:
hair can be a safety hazard
Yes, the water in the cup have the same average kinetic energy as the ocean, because I focus on the word 'average'. However the cup of water have less INTERNAL energy than the ocean.
hope it helps☺☺
Answer:
Both are moving at 30 km/h, so their speed is the same. ... enough fuel for the trip/how long it will take. 4 Weight is a force, and so is a vector. ... c At 10 seconds David's displacement is.
Answer:
Straight Line
Explanation:
For an ideal gas,
PV = nRT
For a fixed quantity ( constant number of moles) of a gas at fixed temperature
Right side of the equation will be constant
Thus,
PV = C
So, P =
.
Thus P is directly related to 
That's why plot between P and
will be an straight line.