Answer:
52.5 J
Explanation:
Work done (W) is the product of the force (F) applied on a body and the distance (s) moved in the direction of the force.
i.e W = F × s
It is a scalar quantity and measured in Joules (J).
Given that: F = 35.0 N and s = 1.50 m, then;
W = F × s
W = 35.0 × 1.5
= 52.5 J
Therefore, the work done on the sleigh by Samuel is 52.5 J.
Answer:
it converges to the focal point
Explanation:
Answer:
Height, H = 25.04 meters
Explanation:
Initially the ball is at rest, u = 0
Time taken to fall to the ground, t = 2.261 s
Let H is the height from which the ball is released. It can be calculated using the second equation of motion as :

Here, a = g
H = 25.04 meters
So, the ball is released form a height of 25.04 meters. Hence, this is the required solution.
Your question has been heard loud and clear.
Well it depends on the magnitude of charges. Generally , when both positive charges have the same magnitude , their equilibrium point is towards the centre joining the two charges. But if magnitude of one positive charge is higher than the other , then the equilibrium point will be towards the charge having lesser magnitude.
Now , a negative charge is placed in between the two positive charges. So , if both positive charges have same magnitude , they both pull the negative charge towards each other with an equal force. Thus the equilibrium point will be where the negative charge is placed because , both forces are equal , and opposite , so they cancel out each other at the point where the negative charge is placed. However if they are of different magnitudes , then the equilibrium point will be shifted towards the positive charge having less magnitude.
Thank you
Answer:
False
Explanation:
the inner planets have solid rocky dense surfaces