Answer: When the electric field due to one is a maximum, the electric field due to the other is also a maximum, and this relation is maintained as time passes. They alternatively reinforce and cancel each other.
Explanation:
In a wave, the phase, is an arbitrary time reference, used to locate a given point of the wave in time, within a cycle.
Two waves can travel at the same speed, or even have the same wavelength, but this is not enough to be sure that at a given point in time, both waves will be in their maximum, as it only can be determined from the phase of the waves.
So, only when the waves reach at the same point in time at the same amplitude, we can say that they arrive in phase, in a constructive interference.
Answer:
The speed of the electron is 1.371 x 10⁶ m/s.
Explanation:
Given;
wavelength of the ultraviolet light beam, λ = 130 nm = 130 x 10⁻⁹ m
the work function of the molybdenum surface, W₀ = 4.2 eV = 6.728 x 10⁻¹⁹ J
The energy of the incident light is given by;
E = hf
where;
h is Planck's constant = 6.626 x 10⁻³⁴ J/s
f = c / λ

Photo electric effect equation is given by;
E = W₀ + K.E
Where;
K.E is the kinetic energy of the emitted electron
K.E = E - W₀
K.E = 15.291 x 10⁻¹⁹ J - 6.728 x 10⁻¹⁹ J
K.E = 8.563 x 10⁻¹⁹ J
Kinetic energy of the emitted electron is given by;
K.E = ¹/₂mv²
where;
m is mass of the electron = 9.11 x 10⁻³¹ kg
v is the speed of the electron

Therefore, the speed of the electron is 1.371 x 10⁶ m/s.
Answer:
Option B. 8.1
Explanation:
From the question given above, the following data were obtained:
Angle θ = 71°
Hypothenus = 25
Adjacent = x
Thus, we can obtain the x component of the vector by using the cosine ratio as illustrated below:
Cos θ = Adjacent /Hypothenus
Cos 71 = x/25
Cross multiply
x = 25 × Cos 71
x = 25 × 0.3256
x = 8.1
Therefore, the x component of the vector is 8.1
(a) 
The moment of inertia of a uniform-density disk is given by

where
M is the mass of the disk
R is its radius
In this problem,
M = 16 kg is the mass of the disk
R = 0.19 m is the radius
Substituting into the equation, we find

(b) 142.5 J
The rotational kinetic energy of the disk is given by

where
I is the moment of inertia
is the angular velocity
We know that the disk makes one complete rotation in T=0.2 s (so, this is the period). Therefore, its angular velocity is

And so, the rotational kinetic energy is

(c) 
The rotational angular momentum of the disk is given by

where
I is the moment of inertia
is the angular velocity
Substituting the values found in the previous parts of the problem, we find
