Answer:
<h2><em><u>Pythagorean </u></em><em><u>theorem </u></em><em><u>reads </u></em><em><u>as:</u></em></h2>
<h2><em><u>H²</u></em><em><u>=</u></em><em><u>P²</u></em><em><u>+</u></em><em><u>B</u></em><em><u>²</u></em></h2>
<h2><em><u>in </u></em><em><u>which </u></em><em><u>p </u></em><em><u>reads </u></em><em><u>as </u></em><em><u>perpendicular </u></em><em><u>so </u></em></h2>
<h2><em><u>P²</u></em><em><u>=</u></em><em><u>H²</u></em><em><u>-</u></em><em><u>B²</u></em></h2>
<em><u>
</u></em>
Length (L): 2w + 3
width (w): w
border (b): 
Area (A) = (L + b) * (w + b) <em>NOTE: This is assuming the width also has a border</em>
= (2w + 3 +
) * (w +
)
= 

= 

= 
Answer:
a 30 pound weight change in 1 month
Step-by-step explanation:
5 pounds
--------------- times 6 months results in a 30 pound weight change in 1 month
1 month
To solve for proportion we make use of the z statistic.
The procedure is to solve for the value of the z score and then locate for the
proportion using the standard distribution tables. The formula for z score is:
z = (X – μ) / σ
where X is the sample value, μ is the mean value and σ is
the standard deviation
when X = 70
z1 = (70 – 100) / 15 = -2
Using the standard distribution tables, proportion is P1
= 0.0228
when X = 130
z2 = (130 – 100) /15 = 2
Using the standard distribution tables, proportion is P2
= 0.9772
Therefore the proportion between X of 70 and 130 is:
P (70<X<130) = P2 – P1
P (70<X<130) = 0.9772 - 0.0228
P (70<X<130) = 0.9544
Therefore 0.9544 or 95.44% of the test takers scored
between 70 and 130.
18,446,744,073,709,551,615 pennies