Tt is the genotype that will appear in boxes two and three.
If you look at the column and row that intersect to form boxes two and three, you will see that they are T and t. That is the best way I can describe it, sorry if it’s confusing.
Answer:
7.98 × 10^3grams.
Explanation:
To find the mass of fluorine in the number of atoms provided, we first divide the number of atoms by Avagadros number (6.02 × 10^23atoms) to get the number of moles in the fluorine atom. That is;
number of moles (n) = number of atoms (nA) ÷ 6.02 × 10^23 atoms
n = 2.542 × 10^26 ÷ 6.02 × 10^23
n = 0.42 × 10^ (26-23)
n = 0.42 × 10^3
n = 4.2 × 10^2moles
Using mole = mass ÷ molar mass
Molar/atomic mass of fluorine (F) = 19g/mol
mass = molar mass × mole
Mass (g) = 19 × 4.2 × 10^2
Mass = 79.8 × 10^2
Mass = 7.98 × 10^3grams.
answer: elements are on the periodic table
Answer:
The expression of an equilibrium constant will given as:
![K_c=\frac{[NH_3]^2}{[N_2][H_2]^3}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BNH_3%5D%5E2%7D%7B%5BN_2%5D%5BH_2%5D%5E3%7D)
Explanation:
Equilibrium constant is defined as the ratio of concentration of products to the concentration of reactants each raised to the power their stoichiometric ratios. It is expressed as 
K is the constant of a certain reaction when it is in equilibrium

The expression of an equilibrium constant will given as:
![K_c=\frac{[NH_3]^2}{[N_2][H_2]^3}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BNH_3%5D%5E2%7D%7B%5BN_2%5D%5BH_2%5D%5E3%7D)
Answer:
ΔS° = -268.13 J/K
Explanation:
Let's consider the following balanced equation.
3 NO₂(g) + H₂O(l) → 2 HNO₃(l) + NO(g)
We can calculate the standard entropy change of a reaction (ΔS°) using the following expression:
ΔS° = ∑np.Sp° - ∑nr.Sr°
where,
ni are the moles of reactants and products
Si are the standard molar entropies of reactants and products
ΔS° = [2 mol × S°(HNO₃(l)) + 1 mol × S°(NO(g))] - [3 mol × S°(NO₂(g)) + 1 mol × S°(H₂O(l))]
ΔS° = [2 mol × 155.6 J/K.mol + 1 mol × 210.76 J/K.mol] - [3 mol × 240.06 J/K.mol + 1 mol × 69.91 J/k.mol]
ΔS° = -268.13 J/K