Answer:
Higher than 59 °C because dipole-dipole interactions in iodine monochloride are stronger than dispersion forces in bromine.
Explanation:
I just took the test and i got it right
Mass of H₂ needed to react with O₂ : 1.092 g
<h3>Further explanation</h3>
The concentration of a substance can be expressed in several quantities such as moles, percent (%) weight / volume,), molarity, molality, parts per million (ppm) or mole fraction. The concentration shows the amount of solute in a unit of the amount of solvent.
Reaction
O₂(g) + 2H₂(g) → 2H₂O(g)
mass of O₂ : 8.75 g
mol O₂(MW=32 g/mol) :

From the equation, mol ratio of O₂ : H₂ = 1 : 2, so mol H₂ :

Mass H₂ (MW=2 g/mol) :

First we have to find moles of C:
Molar mass of CO2:
12*1+16*2 = 44g/mol
(18.8 g CO2) / (44.00964 g CO2/mol) x (1 mol C/ 1 mol CO2) =0.427 mol C
Molar mass of H2O:
2*1+16 = 18g/mol
As there is 2 moles of H in H2O,
So,
<span>(6.75 g H2O) / (18.01532 g H2O/mol) x (2 mol H / 1 mol H2O) = 0.74mol H </span>
<span>Divide both number of moles by the smaller number of moles: </span>
<span>As Smaaler no moles is 0.427:
So,
Dividing both number os moles by 0.427 :
(0.427 mol C) / 0.427 = 1.000 </span>
<span>(0.74 mol H) / 0.427 = 1.733 </span>
<span>To achieve integer coefficients, multiply by 2, then round to the nearest whole numbers to find the empirical formula:
C = 1 * 2 = 2
H = 1.733 * 2 =3.466
So , the empirical formula is C2H3</span>
Dalton Found out there was a small, hard indestructible sphere that is the smalles part of an element.He created his own Atomic Theory:
-All Matter is made up of small particles called atoms.
-Atoms cannot be created, destroyed, or divided into smaller particles.
-All atoms of the same element are identical in mass and size. The atoms of one element are different in mass and size from the atoms of other elements.
<span>-Compounds are created when atoms of different elements link together in definite proportions.
</span><span>Rutherford had found the positively charged nucleus in the middle of every atom using his Gold Foil Experiment. While doing this experiment, he expected these particles to just pass right through the foil but they bounced right back. He also proposed there were negatively charged electrons revolving around the nucleus.
</span><span>Thompson found negative electrons and inferred atoms also contain negative particles. He inferred there was a lump of positively charged material, with negative electrons throughout. He used the Raisins Bun Model to explain.
</span>Chadwick <span>proved that it consisted of a neutral particle with about the same mass as a proton "Neutron" is the name given to the particle</span>
Bohr believed Rutherford's prediction was correct, but it wasn't complete. Bohr proposed electrons could only move between energy levels, rather then being able to move everywhere.
Answer:
I. Increasing pressure will allow more frequent successful collision between particles due to the particles being closer together.
II. Rate of reaction increases due to more products being made; as increased pressure favours the exothermic side of the equilibrium.
III. Increasing temperature provides particles lots of (Kinetic) energy, for more frequent successful collision due to the particles moving at a faster rate than before. However, favouring the endothermic side of the equilibrium due to lots of energy required to break and form new bonds.
IV. Rate of reaction increases due to increase temperature favouring both directions of the equilibrium - causing products to form faster.
Hope this helps!