1. Atoms
2 neutral, proton
3.
Hello.
The answer is <span>+313.766 J/mol·K
</span>
Use the coefficients of the reaction and sum the product entropies less the reactant entropies:
4*188.8 + 2*213.7 - 3*205.1 - 2* 126.8 = 313.7 J/mol*K
Have a nice day
Answer:
B. It is important that people are not harmed for the sake of science.
Explanation:
Ethical principles stress the need to do good and cause no harm.A researcher is therefore required to;
- obtain an informed consent from the participants
- minimize or eliminate risk of harm to participants
- protect the anonymity and confidentiality of participants
- Apply no deceptive techniques
- allow the right to withdraw from the study by a participant
Hello!
<span>
You'll need to react
7,5 moles of Sodium with sulfuric acid to produce 3.75 moles of sodium sulfate
</span>
First of all, you need to balance the reaction. The balanced reaction is shown below (ensuring that the Law of Conservation of Mass is met on both sides):
2Na + H₂SO₄ → Na₂SO₄ + H₂
Now, all that you have to do is to use molar equivalences in this reaction applying the coefficients to calculate the moles of Sodium that you'll need:
Have a nice day!
Answer:
C₆H₁₂O₆ and O₂ are reactant.
CO₂ and H₂O are products.
C₆H₁₂O₆ + 6O₂ → 6CO₂ + 6H₂O + ATP
Explanation:
There are two types of respiration:
1. Aerobic respiration
2. Anaerobic respiration
Aerobic respiration
It is the breakdown of glucose molecule in the presence of oxygen to yield large amount of energy. Water and carbon dioxide are also produced as a byproduct.
Glucose + oxygen → carbon dioxide + water + 38ATP
Anaerobic Respiration
It is the breakdown of glucose molecule in the absence of oxygen and produce small amount of energy. Alcohol or lactic acid and carbon dioxide are also produced as byproducts.
Glucose→ lactic acid/alcohol + 2ATP + carbon dioxide
This process use respiratory electron transport chain as electron acceptor instead of oxygen. It is mostly occur in prokaryotes. Its main advantage is that it produce energy (ATP) very quickly as compared to aerobic respiration.
Steps involve in anaerobic respiration are:
Glycolysis
Glycolysis is the first step of both aerobic and anaerobic respiration. It involve the breakdown of one glucose molecule into pyruvate and 2ATP.
Fermentation
The second step of anaerobic respiration is fermentation. It involve the fermentation of pyruvate into lactic acid or alcohol depending upon the organism in which it is taking place. There is no ATP produced, however carbon dioxide is released in this step.