As you were holding the block down and in place, the spring exerted an upward force that balanced the downward push by your hand and its own weight. So this restoring force has a magnitude of <em>R</em> such that
<em>R</em> - 50 N - (3 kg) <em>g</em> = 0 => <em>R</em> = 79.4 N
As soon as you remove your hand, the block has acceleration <em>a</em> such that, by Newton's second law,
<em>R</em> - (3 kg) <em>g</em> = (3 kg) <em>a</em> => <em>a</em> = (79.4 N - (3 kg) <em>g</em>) / (3 kg) ≈ 16.7 m/s^2
pointing upward.
Explanation:
Below is an attachment containing the solution.
B. Accelerating a bowling ball from rest to 35 m/s
Explanation:
Accelerating a bowling ball from rest to 35m/s will require more impulse compared to a baseball.
Impulse is the force acting on a body a particular period of time. It is similar to momentum.
When impulse is applied on a body, it change it state from rest and cause motion.
A body with more mass will require a higher impulse to cause it to accelerate. Bowling balls are heavier. They require more impulse to make them move.
Learn more:
Momentum brainly.com/question/9484203
#learnwithBrainly
Answer:
4334.4 J
Explanation:
Work done equals to kinetic energy change
KE=½mv²
Change in KE is given by
∆KE=½m(v²-u²)
Where m is mass of water-skier, KE is kinetic energy, ∆KE is the change in kinetic energy, v is final velocity and u is initial velocity.
Substituting 72 kg for m, 12.1 m/s for v and 5.10 m/s for u then
∆KE=½*72(12.1²-5.10²)=4334.4J
Therefore, the work done by the net external force acting on the skier is equal to 4334.4 J