When we first dig into soil, it's nice and soft.( Depending on what soil it is; usually topsoil)
But when we go deeper into it, there are rocks and the soil is harder. There is bedrock at the bottom, subsoil in the middle, and topsoil at the top, which is where we walk.
Velocity tells you how fast and in what direction. Speed only tells how fast.
Answer: 17cm.
Explanation:
The equation you're using is:
Δd = df - di
Which means the change in position is equal to the final position minus the starting position. In this case that works out to 20cm - 3cm = 17cm. We're only interested in how much the snail moved, not how long it took to move, so even though they give a time it actually doesn't matter for this question.
Answer:
2872.8 N
Explanation:
We have the following information
m =n72kg
Δy = 18m
t = 0.95s.
From here we use the equation
Δy=1/2at2 in order to solve for the acceleration.
So a
=( 2x 18m)/(0.95s²)
= 36/0.9025
= 39.9m/s2.
From there we use the equation
F = ma
F=(72kg) x (39.9)
= 2872.8N.
2872.8N is the average net force exerted on him in the barrel of the cannon.
Thank you!
The X-axis of the H-R Diagram indicates the star's surface temperature in degrees Kelvin. The Y-axis, on the other hand, indicates luminosity, or brightness.
Main sequence refers to a roughly diagonal, slightly S-curved line stretching between the upper-left and lower-right corners on which main sequence stars chart. They maintain a predictable relationship between luminosity and temperature: the brighter, the hotter. The upper-right quadrant of the H-R diagram is home to newly discovered red giants while the lower-left quadrant of the H-R Diagram belongs almost exclusively to white dwarfs.