From the information given, The mass of the bowling ball is 8 Kilograms and the momentum with which it is moving is 16 kg m/s.
We use the formula p = m × v
Where p is the momentum, m is the mass and v is the velocity.
We need velocity so we rewrite the equation thus:
P = mv, therefore p/m = v or v = p/m
In our case p = 16 and m = 8
v = p/m
v = 16/8
v = 2
Therefore the bowling ball is travelling at 2m/s
Answer:
0.88752 kgm²
0.02236 Nm
Explanation:
m = Mass of ball = 1.2 kg
L = Length of rod = 0.86 m
= Angle = 90°
Rotational inertia is given by

The rotational inertia is 0.88752 kgm²
Torque is given by

The torque is 0.02236 Nm
I believe its the law of inertia
The answer to this question is <span>13,537</span>