Answer:
The induced current and the power dissipated through the resistor are 0.5 mA and
.
Explanation:
Given that,
Distance = 1.0 m
Resistance = 3.0 Ω
Speed = 35 m/s
Angle = 53°
Magnetic field 
(a). We need to calculate the induced emf
Using formula of emf

Where, B = magnetic field
l = length
v = velocity
Put the value into the formula


We need to calculate the induced current


Put the value into the formula


(b). We need to calculate the power dissipated through the resistor
Using formula of power

Put the value into the formula


Hence, The induced current and the power dissipated through the resistor are 0.5 mA and
.
Falling from an airplane.
We are given a series circuit with two light bulbs. In this case, the light bulbs act as resistors in series and the total resistance is:

That is the sum of all the resistances in series in the circuit. To determine the voltage we can use Ohm's law:

Where "R" is the total resistance and "I" is the current in the circuit. Replacing we get: