Answer:
(molecular) 3 CaCl₂(aq) + 2 (NH₄)₃PO₄(aq) ⇄ Ca₃(PO₄)₂(s) + 6 NH₄Cl(aq)
(ionic) 3 Ca²⁺(aq) + 6 Cl⁻(aq) + 6 NH₄⁺(aq) + 2 PO₄³⁻(aq) ⇄ Ca₃(PO₄)₂(s) + 6 NH₄⁺(aq) + 6 Cl⁻(aq)
(net ionic) 3 Ca²⁺(aq) + 2 PO₄³⁻(aq) ⇄ Ca₃(PO₄)₂(s)
Explanation:
The molecular equation includes al the species in the molecular form.
3 CaCl₂(aq) + 2 (NH₄)₃PO₄(aq) ⇄ Ca₃(PO₄)₂(s) + 6 NH₄Cl(aq)
The ionic equation includes all the ions (species that dissociate in water) and the species that do not dissociate in water.
3 Ca²⁺(aq) + 6 Cl⁻(aq) + 6 NH₄⁺(aq) + 2 PO₄³⁻(aq) ⇄ Ca₃(PO₄)₂(s) + 6 NH₄⁺(aq) + 6 Cl⁻(aq)
The net ionic equation includes only the ions that participate in the reaction and the species that do not dissociate in water. In does not include <em>spectator ions</em>.
3 Ca²⁺(aq) + 2 PO₄³⁻(aq) ⇄ Ca₃(PO₄)₂(s)
Answer:
The total number of orbitals for a given n value is n2.
Explanation:
For a hydrogen atom with n=1, the electron is in its ground state; if the electron is in the n=2 orbital, it is in an excited state.
Answer:
3). 1.30 × 10^(24) molecules
Explanation:
From avogadro's law which state that equal volume of all gases at the same temperature and pressure contain the same number of molecules.
We can relate it to this question as;
V₁/n₁ = V₂/n₂
Where;
V₁ is initial volume
n₁ is initial number of molecules
V₂ is final volume
n₂ is final number of molecules
Thus at STP, we have V₁ = V₂ and as such Plugging in the relevant values gives;
5/(1.30 x 10^(24)) = 5/n₂
n₂ = 1.30 x 10^(24) molecules
Answer:
The energy harnessed in nuclei is released in nuclear reactions. Fission is the splitting of a heavy nucleus into lighter nuclei and fusion is the combining of nuclei to form a bigger and heavier nucleus. The consequence of fission or fusion is the absorption or release of energy.
Introduction