Answer:When you add baking powder to water or milk, the alkali and the acidreact with one another and produce carbon dioxide – the bubbles. Sodium bicarbonate is a weak base which is commonly known as baking soda and used in cooking. It weakly ionizes in water: NaHCO3 + H2O → H2CO3 + (OH-) + (Na+). u need to stop deleteing my answers ughh
Explanation:
To calculate the molarity you only need to know the number of moles in the solution and the volume of that solution. This exercise gives both and with that you divide moles by volume(usually in liters).
500 ml equals 0,5 L
molarity= number of moles/ volume
molarity=0,75 x 0,5
= 0,375 mol/L
Answer:
Physical Change
Explanation:
A solid being crushed into a powder is a physical change because a chemical change is when substances combine to create new substances.
Hope this helps :)
Answer:
0.11%
Explanation:
Without mincing words, let us dive straight into the solution to the question/problem. The first step to solve this question is to write out the chemical reaction, that is the reaction showing the dissociation of acetic acid.
CH3COOH <=======================================> CH3COO⁻ + H⁺
Initially, the amount present in the acetic acid which is = 12M, the concentration for CH3COO⁻ and H⁺ is 0 respectively.
At equilibrium, the amount present in the acetic acid which is = 12 - x, the concentration for CH3COO⁻ = x and H⁺ = x respectively. Note that the ka for acetic acid = 1.8 × 10⁻⁵.
1.8 × 10⁻⁵ = x²/ 14 - x. Therefore, x = 0.0158 M.
The next thing to do is to calculate for the percentage of dissociation, this can be done as given below:
percentage of dissociation = x/14 × 100. Recall that the value that we got for x = 0.0158 M. Hence, the percentage of dissociation = 0.0158 M/ 14m × 100 = 0.11%