Answer:
They are the same (assuming there is no air friction)
Explanation:
Take a look at the picture.
When the first ball (the one thrown upward) gets to the point marked as A, the speed will has the exact same value V but the velocity will now point downward (just like the second ball).
So if you think about it, the first ball, from point A to the ground, will behave exactly like the second ball (same initial speed, same height).
That is why the speeds will be the same when they reach the ground.
More energy, colour and I think less bright
Explanation:
Earth rotates in prograde mation.As viewed from the north pole star Polaris.Earth turns counterclockwise,, the north pole is point in the northern,, Hemisphere where Earth's Axis of rotation meets it's surface
Hello!

Use the formula for kinetic energy:

Plug in the given mass and velocity:

Simplify:

Answer:
The balloon would still move like a rocket
Explanation:
The principle of work of this system is the Newton's third law of motion, which states that:
"When an object A exerts a force on an object B (action), object B exerts an equal and opposite force (reaction) on object A"
In this problem, we can identify the balloon as object A and the air inside the balloon as object B. As the air goes out from the balloon, the balloon exerts a force (backward) on the air, and as a result of Newton's 3rd law, the air exerts an equal and opposite force (forward) on the balloon, making it moving forward.
This mechanism is not affected by the presence or absence of surrounding air: in fact, this mechanism also works in free space, where there is no air (and in fact, rockets also moves in space using this system, despite the absence of air).