Answer:
Copper (II) chloride.
Explanation:
Hello,
In this case, considering the described reaction which is also given as:

For us to identify the limiting reactant we first compute the available moles of aluminium:

Next, we compute the consumed moles of aluminium by the 1147 grams of copper (II) chloride by using their 2:3 molar ratio:

Thereby, we can infer aluminium is in excess since less moles are consumed than available whereas the copper (II) chloride is the limiting reactant.
Best regards.
Answer:
.371 mole of NaCl
Explanation:
Na Cl Mole weight = 22.989 + 35.45 = 58.439 g/mole
21.7 g / 58.439 g/mole = .371 mole
We can use the heat equation,
Q = mcΔT
where Q is the amount of energy transferred (J), m is the mass of the substance (kg), c is the specific heat (J g⁻¹ °C⁻¹) and ΔT is the temperature difference (°C).
Q = 11.2 kJ = 11200 J
m = <span>145 g
</span>c = ?
ΔT = (67 - 22) °C = 45 °C
By applying the formula,
11200 J = 145 g x c x 45 °C
c = 1.72 J g⁻¹ °C⁻¹
Hence, specific heat of benzene is 1.72 J g⁻¹ °C⁻¹.
Answer:
1255.4L
Explanation:
Given parameters:
P₁ = 928kpa
T₁ = 129°C
V₁ = 569L
P₂ = 319kpa
T₂ = 32°C
Unknown:
V₂ = ?
Solution:
The combined gas law application to this problem can help us solve it. It is mathematically expressed as;

P, V and T are pressure, volume and temperature
where 1 and 2 are initial and final states.
Now,
take the units to the appropriate ones;
kpa to atm, °C to K
P₂ = 319kpa in atm gives 3.15atm
P₁ = 928kpa gives 9.16atm
T₂ = 32°C gives 273 + 32 = 305K
T₁ = 129°C gives 129 + 273 = 402K
Input the values in the equation and solve for V₂;

V₂ = 1255.4L