Answer:
D. C > B >A
Hope it helps!
Explanation:
From strongest to weakest, the intermolecular forces rank in the following way:
Strongest: Hydrogen bonding. This occurs when compounds contain #"O"-"H"# , #"N"-"H"# , or #"F"-"H"# bonds. ...
Less strong: Dipole-dipole forces. ...
Weakest: London Dispersion Forces.
Answer:
Explanation:
A buffer is defined as an aqueous mixture of a weak acid and its conjugate base or vice versa.
In the systems:
H₂CO₃(aq) and KHCO₃(aq): Carbonic acid, H₂CO₃, is a weak acid that, in solution with its conjugate pair, HCO₃⁻ make a <em>buffer system.</em>
NaCl(aq) and NaOH(aq): NaCl is a salt and NaOH is a strong base. Thus, this system <em>is not </em> a buffer system.
H₂O(l) and HCl(aq): Water is a solvent and HCl a strong acid. This <em>is not </em>a buffer system.
HCl(aq) and NaOH(aq): HCl is a strong acid and NaOH a strong base. This <em>is not </em>a buffer system.
NaCl(aq) and NaNO₃(aq): Both NaCl and NaNO₃ are salts and this system <em>is not </em>a buffer system.
Answer is: (4) emits energy as it moves to a lower energy state.
Atom emits a characteristic set of discrete wavelengths, according to its electronic energy levels.
Emission spectrum of a chemical element is the spectrum of frequencies emitted due to an atom making a transition from a high energy state to a lower energy state.
Each transition has a specific energy difference.
Each element's emission spectrum is unique.
Answer:
63. 55 amu
Explanation:
Copper is known to exist in two different isotopes which are Cu-63 and Cu-65.
Cu-63 has an atomic mass of 62.93 amu and it has an abundance of 69.15%.
Similarly,
Cu-65 has an atomic mass of 64.93 amu and it has an abundance of 30.85%
Therefore, using the weighted average mass method, the atomic mass of copper is:
Atomic mass of copper = (0.6915*62.93) amu + (0.3085*64.93) amu = 43.52 amu + 20.03 amu = 63.55 amu
Thus, the atomic mass of copper (express in two decimal places) is 63.55 amu